Acoustofluidic Assembly of 3D Neurospheroids to Model Alzheimer’s Disease

If you need an accessible version of this item, please submit a remediation request.
Date
2020-09-28
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Royal Society of Chemistry
Abstract

Neuroinflammation plays a central role in the progression of many neurodegenerative diseases such as Alzheimer's disease, and challenges remain in modeling the complex pathological or physiological processes. Here, we report an acoustofluidic method that can rapidly construct 3D neurospheroids and inflammatory microenvironments for modeling microglia-mediated neuroinflammation in Alzheimer's disease. By incorporating a unique contactless and label-free acoustic assembly, this cell culture platform can assemble dissociated embryonic mouse brain cells into hundreds of uniform 3D neurospheroids with controlled cell numbers, composition (e.g. neurons, astrocytes, and microglia), and environmental components (e.g. amyloid-β aggregates) in hydrogel within minutes. Moreover, this platform can maintain and monitor the interaction among neurons, astrocytes, microglia, and amyloid-β aggregates in real-time for several days to weeks, after the integration of a high-throughput, time-lapse cell imaging approach. We demonstrated that our engineered 3D neurospheroids can represent the amyloid-β neurotoxicity, which is one of the main pathological features of Alzheimer's disease. Using this method, we also investigated the microglia migratory behaviors and activation in the engineered 3D inflammatory microenvironment at a high throughput manner, which is not easy to achieve in 2D neuronal cultures or animal models. Along with the simple fabrication and setup, the acoustofluidic technology is compatible with conventional Petri dishes and well-plates, supports the fine-tuning of the cellular and environmental components of 3D neurospheroids, and enables the high-throughput cellular interaction investigation. We believe our technology may be widely used to facilitate 3D in vitro brain models for modeling neurodegenerative diseases, discovering new drugs, and testing neurotoxicity.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Cai H , Ao Z , Hu L , et al. Acoustofluidic assembly of 3D neurospheroids to model Alzheimer's disease. Analyst. 2020;145(19):6243-6253. doi:10.1039/d0an01373k
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Analyst
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Author's manuscript
Full Text Available at
This item is under embargo {{howLong}}