Contributions of the Presynaptic Protein Bassoon to Tau Pathogenesis and Neurodegeneration

Date
2024-05
Language
American English
Embargo Lift Date
Department
Committee Chair
Degree
Ph.D.
Degree Year
2024
Department
Grantor
Indiana University
Journal Title
Journal ISSN
Volume Title
Found At
Abstract

Neurodegenerative tauopathies, characterized by the aggregation of misfolded tau protein, pose a significant clinical and scientific challenge. A high-molecular-weight (HMW) tau species is known to be involved in spreading tau pathology. However, the nature and composition of this species remain elusive, hindering targeted interventions. There are four main chapters in this dissertation. The first chapter highlights the existing knowledge about tau and its role in neurodegenerative tauopathies and discusses the possible contribution of protein interactors in the pathogenesis of tau pathology. The second chapter investigates the association between pathological hallmarks and functional deficits in the aged PS19 tauopathy model. The findings indicate that a diverse spectrum of pathological tau species may underly different symptoms and that neuroinflammation might contribute to functional deficits independent of tau pathology. In the third chapter, we isolated and characterized the HMW tau species with seeding capabilities from the PS19 brains. Using unbiased quantitative mass spectrometry analysis, we identified Bassoon (BSN), a presynaptic protein, as a crucial interactor of the HMW tau seed. BSN overexpression exacerbated tau-seeding and toxicity both in vitro and in the Drosophila model of tauopathy. Conversely, the downregulation of BSN reduced tau spreading and overall disease pathology in the PS19 mice, indicating the important role of BSN in taumediated pathogenesis. In chapter four, we studied the disease-associated p.Pro3866Ala missense mutation in BSN and further evaluated the mechanisms through which BSN could induce toxicity and neurodegeneration. Using CRISPR-Cas9 technology, we developed a knock-in mouse model harboring the BSN P3866A missense mutation in the endogenous murine Bsn. We observed somatic BSN accumulation suggesting that the P3866A mutation might be enhancing the aggregation propensity of BSN and provide a conducive environment to promote tau aggregation. Furthermore, we observed dysregulation in protein degradation pathways, neuroinflammation, and enhanced synapse elimination by microglia. These findings underscore the pivotal role of BSN in providing a favorable environment for tau aggregation and influencing the properties of the tau seed, thereby contributing to neurodegenerative processes. Overall, our results indicate that targeting BSN could be a potential therapeutic intervention for neurodegenerative diseases.

Description
Indiana University-Purdue University Indianapolis (IUPUI)
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Rights
Source
Alternative Title
Type
Dissertation
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}