- Browse by Author
Browsing by Author "Hayes, Ryan L."
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Addressing Intersite Coupling Unlocks Large Combinatorial Chemical Spaces for Alchemical Free Energy Methods(American Chemical Society, 2022) Hayes, Ryan L.; Vilseck, Jonah Z.; Brooks, Charles L., III.; Biochemistry and Molecular Biology, School of MedicineAlchemical free energy methods are playing a growing role in molecular design, both for computer-aided drug design of small molecules and for computational protein design. Multisite λ dynamics (MSλD) is a uniquely scalable alchemical free energy method that enables more efficient exploration of combinatorial alchemical spaces encountered in molecular design, but simulations have typically been limited to a few hundred ligands or sequences. Here, we focus on coupling between sites to enable scaling to larger alchemical spaces. We first discuss updates to the biasing potentials that facilitate MSλD sampling to include coupling terms and show that this can provide more thorough sampling of alchemical states. We then harness coupling between sites by developing a new free energy estimator based on the Potts models underlying direct coupling analysis, a method for predicting contacts from sequence coevolution, and find it yields more accurate free energies than previous estimators. The sampling requirements of the Potts model estimator scale with the square of the number of sites, a substantial improvement over the exponential scaling of the standard estimator. This opens up exploration of much larger alchemical spaces with MSλD for molecular design.Item CHARMM at 45: Enhancements in Accessibility, Functionality, and Speed(American Chemical Society, 2024) Hwang, Wonmuk; Austin, Steven L.; Blondel, Arnaud; Boittier, Eric D.; Boresch, Stefan; Buck, Matthias; Buckner, Joshua; Caflisch, Amedeo; Chang, Hao-Ting; Cheng, Xi; Choi, Yeol Kyo; Chu, Jhih-Wei; Crowley, Michael F.; Cui, Qiang; Damjanovic, Ana; Deng, Yuqing; Devereux, Mike; Ding, Xinqiang; Feig, Michael F.; Gao, Jiali; Glowacki, David R.; Gonzales, James E., II; Hamaneh, Mehdi Bagerhi; Harder, Edward D.; Hayes, Ryan L.; Huang, Jing; Huang, Yandong; Hudson, Phillip S.; Im, Wonpil; Islam, Shahidul M.; Jiang, Wei; Jones, Michael R.; Käser, Silvan; Kearns, Fiona L.; Kern, Nathan R.; Klauda, Jeffery B.; Lazaridis, Themis; Lee, Jinhyuk; Lemkul, Justin A.; Liu, Xiaorong; Luo, Yun; MacKerell, Alexander D., Jr.; Major, Dan T.; Meuwly, Markus; Nam, Kwangho; Nilsson, Lennart; Ovchinnikov, Victor; Paci, Emanuele; Park, Soohyung; Pastor, Richard W.; Pittman, Amanda R.; Post, Carol Beth; Prasad, Samarjeet; Pu, Jingzhi; Qi, Yifei; Rathinavelan, Thenmalarchelvi; Roe, Daniel R.; Roux, Benoit; Rowley, Christopher N.; Shen, Jana; Simmonett, Andrew C.; Sodt, Alexander J.; Töpfer, Kai; Upadhyay, Meenu; van der Vaart, Arjan; Vazquez-Salazar, Luis Itza; Venable, Richard M.; Warrensford, Luke C.; Woodcock, H. Lee; Wu, Yujin; Brooks, Charles L., III; Brooks, Bernard R.; Karplus, Martin; Chemistry and Chemical Biology, School of ScienceSince its inception nearly a half century ago, CHARMM has been playing a central role in computational biochemistry and biophysics. Commensurate with the developments in experimental research and advances in computer hardware, the range of methods and applicability of CHARMM have also grown. This review summarizes major developments that occurred after 2009 when the last review of CHARMM was published. They include the following: new faster simulation engines, accessible user interfaces for convenient workflows, and a vast array of simulation and analysis methods that encompass quantum mechanical, atomistic, and coarse-grained levels, as well as extensive coverage of force fields. In addition to providing the current snapshot of the CHARMM development, this review may serve as a starting point for exploring relevant theories and computational methods for tackling contemporary and emerging problems in biomolecular systems. CHARMM is freely available for academic and nonprofit research at https://academiccharmm.org/program.Item Fast free energy estimates from λ-dynamics with bias-updated Gibbs sampling(Springer Nature, 2023-12-21) Robo, Michael T.; Hayes, Ryan L.; Ding, Xinqiang; Pulawski, Brian; Vilseck, Jonah Z.; Biochemistry and Molecular Biology, School of MedicineRelative binding free energy calculations have become an integral computational tool for lead optimization in structure-based drug design. Classical alchemical methods, including free energy perturbation or thermodynamic integration, compute relative free energy differences by transforming one molecule into another. However, these methods have high operational costs due to the need to perform many pairwise perturbations independently. To reduce costs and accelerate molecular design workflows, we present a method called λ-dynamics with bias-updated Gibbs sampling. This method uses dynamic biases to continuously sample between multiple ligand analogues collectively within a single simulation. We show that many relative binding free energies can be determined quickly with this approach without compromising accuracy. For five benchmark systems, agreement to experiment is high, with root mean square errors near or below 1.0 kcal mol-1. Free energy results are consistent with other computational approaches and within statistical noise of both methods (0.4 kcal mol-1 or less). Notably, large efficiency gains over thermodynamic integration of 18-66-fold for small perturbations and 100-200-fold for whole aromatic ring substitutions are observed. The rapid determination of relative binding free energies will enable larger chemical spaces to be more readily explored and structure-based drug design to be accelerated.Item Generalizing the Discrete Gibbs Sampler-based λ-Dynamics Approach for Multisite Sampling of Many Ligands(American Chemical Society, 2021) Vilseck, Jonah Z.; Ding, Xinqiang; Hayes, Ryan L.; Brooks, Charles L., III.; Biochemistry and Molecular Biology, School of MedicineIn this work, the discrete λ variant of the Gibbs sampler-based λ-dynamics (d-GSλD) method is developed to enable multiple functional group perturbations to be investigated at one or more sites of substitution off a common ligand core. The theoretical framework and special considerations for constructing discrete λ states for multisite d-GSλD are presented. The precision and accuracy of the d-GSλD method is evaluated with three test cases of increasing complexity. Specifically, methyl → methyl symmetric perturbations in water, 1,4-benzene hydration free energies and protein-ligand binding affinities for an example HIV-1 reverse transcriptase inhibitor series are computed with d-GSλD. Complementary MSλD calculations were also performed to compare with d-GSλD's performance. Excellent agreement between d-GSλD and MSλD is observed, with mean unsigned errors of 0.12 and 0.22 kcal/mol for computed hydration and binding free energy test cases, respectively. Good agreement with experiment is also observed, with errors of 0.5-0.7 kcal/mol. These findings support the applicability of the d-GSλD free energy method for a variety of molecular design problems, including structure-based drug design. Finally, a discussion of d-GSλD versus MSλD approaches is presented to compare and contrast features of both methods.Item How to Sample Dozens of Substitutions per Site with λ Dynamics(American Chemical Society, 2024) Hayes, Ryan L.; Cervantes, Luis F.; Abad Santos, Justin Cruz; Samadi, Amirmasoud; Vilseck, Jonah Z.; Brooks, Charles L., III; Biochemistry and Molecular Biology, School of MedicineAlchemical free energy methods are useful in computer-aided drug design and computational protein design because they provide rigorous statistical mechanics-based estimates of free energy differences from molecular dynamics simulations. λ dynamics is a free energy method with the ability to characterize combinatorial chemical spaces spanning thousands of related systems within a single simulation, which gives it a distinct advantage over other alchemical free energy methods that are mostly limited to pairwise comparisons. Recently developed methods have improved the scalability of λ dynamics to perturbations at many sites; however, the size of chemical space that can be explored at each individual site has previously been limited to fewer than ten substituents. As the number of substituents increases, the volume of alchemical space corresponding to nonphysical alchemical intermediates grows exponentially relative to the size corresponding to the physical states of interest. Beyond nine substituents, λ dynamics simulations become lost in an alchemical morass of intermediate states. In this work, we introduce new biasing potentials that circumvent excessive sampling of intermediate states by favoring sampling of physical end points relative to alchemical intermediates. Additionally, we present a more scalable adaptive landscape flattening algorithm for these larger alchemical spaces. Finally, we show that this potential enables more efficient sampling in both protein and drug design test systems with up to 24 substituents per site, enabling, for the first time, simultaneous simulation of all 20 amino acids.Item Optimizing Multisite λ-Dynamics Throughput with Charge Renormalization(American Chemical Society, 2022) Vilseck, Jonah Z.; Cervantes, Luis F.; Hayes, Ryan L.; Brooks, Charles L., III.; Biochemistry and Molecular Biology, School of MedicineWith the ability to sample combinations of alchemical perturbations at multiple sites off a small molecule core, multisite λ-dynamics (MSλD) has become an attractive alternative to conventional alchemical free energy methods for exploring large combinatorial chemical spaces. However, current software implementations dictate that combinatorial sampling with MSλD must be performed with a multiple topology model (MTM), which is nontrivial to create by hand, especially for a series of ligand analogues which may have diverse functional groups attached. This work introduces an automated workflow, referred to as msld_py_prep, to assist in the creation of a MTM for use with MSλD. One approach for partitioning partial atomic charges between ligands to create a MTM, called charge renormalization, is also presented and rigorously evaluated. We find that msld_py_prep greatly accelerates the preparation of MSλD ready-to-use files and that charge renormalization can provide a successful approach for MTM generation, as long as bookending calculations are applied to correct small differences introduced by charge renormalization. Charge renormalization also facilitates the use of many different force field parameters with MSλD, broadening the applicability of MSλD for computer-aided drug design.