Fast free energy estimates from λ-dynamics with bias-updated Gibbs sampling

Date
2023-12-21
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Springer Nature
Abstract

Relative binding free energy calculations have become an integral computational tool for lead optimization in structure-based drug design. Classical alchemical methods, including free energy perturbation or thermodynamic integration, compute relative free energy differences by transforming one molecule into another. However, these methods have high operational costs due to the need to perform many pairwise perturbations independently. To reduce costs and accelerate molecular design workflows, we present a method called λ-dynamics with bias-updated Gibbs sampling. This method uses dynamic biases to continuously sample between multiple ligand analogues collectively within a single simulation. We show that many relative binding free energies can be determined quickly with this approach without compromising accuracy. For five benchmark systems, agreement to experiment is high, with root mean square errors near or below 1.0 kcal mol-1. Free energy results are consistent with other computational approaches and within statistical noise of both methods (0.4 kcal mol-1 or less). Notably, large efficiency gains over thermodynamic integration of 18-66-fold for small perturbations and 100-200-fold for whole aromatic ring substitutions are observed. The rapid determination of relative binding free energies will enable larger chemical spaces to be more readily explored and structure-based drug design to be accelerated.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Robo MT, Hayes RL, Ding X, Pulawski B, Vilseck JZ. Fast free energy estimates from λ-dynamics with bias-updated Gibbs sampling. Nat Commun. 2023;14(1):8515. Published 2023 Dec 21. doi:10.1038/s41467-023-44208-9
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Nature Communications
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Final published version
Full Text Available at
This item is under embargo {{howLong}}