How to Sample Dozens of Substitutions per Site with λ Dynamics

If you need an accessible version of this item, please submit a remediation request.
Date
2024
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
American Chemical Society
Abstract

Alchemical free energy methods are useful in computer-aided drug design and computational protein design because they provide rigorous statistical mechanics-based estimates of free energy differences from molecular dynamics simulations. λ dynamics is a free energy method with the ability to characterize combinatorial chemical spaces spanning thousands of related systems within a single simulation, which gives it a distinct advantage over other alchemical free energy methods that are mostly limited to pairwise comparisons. Recently developed methods have improved the scalability of λ dynamics to perturbations at many sites; however, the size of chemical space that can be explored at each individual site has previously been limited to fewer than ten substituents. As the number of substituents increases, the volume of alchemical space corresponding to nonphysical alchemical intermediates grows exponentially relative to the size corresponding to the physical states of interest. Beyond nine substituents, λ dynamics simulations become lost in an alchemical morass of intermediate states. In this work, we introduce new biasing potentials that circumvent excessive sampling of intermediate states by favoring sampling of physical end points relative to alchemical intermediates. Additionally, we present a more scalable adaptive landscape flattening algorithm for these larger alchemical spaces. Finally, we show that this potential enables more efficient sampling in both protein and drug design test systems with up to 24 substituents per site, enabling, for the first time, simultaneous simulation of all 20 amino acids.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Hayes RL, Cervantes LF, Abad Santos JC, Samadi A, Vilseck JZ, Brooks CL 3rd. How to Sample Dozens of Substitutions per Site with λ Dynamics. J Chem Theory Comput. 2024;20(14):6098-6110. doi:10.1021/acs.jctc.4c00514
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Journal of Chemical Theory and Computation
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Final published version
Full Text Available at
This item is under embargo {{howLong}}