- Browse by Author
Browsing by Author "Caylor, Kelly K."
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Ecosystem-scale spatial heterogeneity of stable isotopes of soil nitrogen in African savannas(2013-04) Wang, Lixin; Okin, Gregory S.; D'Odorico, Paolo; Caylor, Kelly K.; Macko, Stephen A.Soil 15N is a natural tracer of nitrogen (N) cycling. Its spatial distribution is a good indicator of processes that are critical to N cycling and of their controlling factors integrated both in time and space. The spatial distribution of soil δ15N and its underlying drivers at sub-kilometer scales are rarely investigated. This study utilizes two sites (dry vs. wet) from a megatransect in southern Africa encompassing locations with similar soil substrate but different rainfall and vegetation, to explore the effects of soil moisture and vegetation distribution on ecosystem-scale patterns of soil δ15N. A 300-m long transect was set up at each site and surface soil samples were randomly collected for analyses of δ15N, %N and nitrate content. At each soil sampling location the presence of grasses, woody plants, Acacia species (potential N fixer) as well as soil moisture levels were recorded. A spatial pattern of soil δ15N existed at the dry site, but not at the wet site. Woody cover distribution determined the soil δ15N spatial pattern at ecosystem-scale; however, the two Acacia species did not contribute to the spatial pattern of soil δ15N. Grass cover was negatively correlated with soil δ15N at both sites owing to the lower foliar δ15N values of grasses. Soil moisture did not play a role in the spatial pattern of soil δ15N at either site. These results suggest that vegetation distribution, directly, and water availability, indirectly, affect the spatial patterns of soil δ15N through their effects on woody plant and grass distributions.Item The effect of warming on grassland evapotranspiration partitioning using laser-based isotope monitoring techniques(2013-06) Wang, Lixin; Niu, Shuli; Good, Stephen P.; Soderberg, Keir; McCabe, Matthew F.; Sherry, Rebecca A.; Luo, Yiqi; Zhou, Xuhui; Xia, Jianyang; Caylor, Kelly K.The proportion of transpiration (T) in total evapotranspiration (ET) is an important parameter that provides insight into the degree of biological influence on the hydrological cycles. Studies addressing the effects of climatic warming on the ecosystem total water balance are scarce, and measured warming effects on the T/ET ratio in field experiments have not been seen in the literature. In this study, we quantified T/ET ratios under ambient and warming treatments in a grassland ecosystem using a stable isotope approach. The measurements were made at a long-term grassland warming site in Oklahoma during the May–June peak growing season of 2011. Chamber-based methods were used to estimate the δ2H isotopic composition of evaporation (δE), transpiration (δT) and the aggregated evapotranspiration (δET). A modified commercial conifer leaf chamber was used for δT, a modified commercial soil chamber was used for δE and a custom built chamber was used for δET. The δE, δET and δT were quantified using both the Keeling plot approach and a mass balance method, with the Craig–Gordon model approach also used to calculate δE. Multiple methods demonstrated no significant difference between control and warming plots for both δET and δT. Though the chamber-based estimates and the Craig–Gordon results diverged by about 12‰, all methods showed that δE was more depleted in the warming plots. This decrease in δE indicates that the evaporation flux as a percentage of total water flux necessarily decreased for δET to remain constant, which was confirmed by field observations. The T/ET ratio in the control treatment was 0.65 or 0.77 and the ratio found in the warming treatment was 0.83 or 0.86, based on the chamber method and the Craig–Gordon approach. Sensitivity analysis of the Craig–Gordon model demonstrates that the warming-induced decrease in soil liquid water isotopic composition is the major factor responsible for the observed δE depletion and the temperature dependent equilibrium effects are minor. Multiple lines of evidence indicate that the increased T/ET ratio under warming is caused mainly by reduced evaporation.Item Global synthesis of vegetation control on evapotranspiration partitioning(2014-10) Wang, Lixin; Good, Stephen P.; Caylor, Kelly K.Evapotranspiration (ET) is an important component of the global hydrological cycle. However, to what extent transpiration ratios (T/ET) are controlled by vegetation and the mechanisms of global-scale T/ET variations are not clear. We synthesized all the published papers that measured at least two of the three components (E, T, and ET) and leaf area index (LAI) simultaneously. Nonlinear relationships between T/ET and LAI were identified for both the overall data set and agricultural or natural data subsets. Large variations in T/ET occurred across all LAI ranges with wider variability at lower LAI. For a given LAI, higher T/ET was observed during later vegetation growing stage within a season. We developed a function relating T/ET to the growing stage relative to the timing of peak LAI. LAI and growing stage collectively explained 43% of the variations in the global T/ET data set, providing a new way to interpret and model global T/ET variability.Item Stable Isotopes of Water Vapor in the Vadose Zone: A Review of Measurement and Modeling Techniques(2012-09) Soderberg, Keir; Good, Stephen P.; Wang, Lixin; Caylor, Kelly K.The stable isotopes of soil water vapor can be useful in the study of ecosystem processes. Modeling has historically dominated the measurement of these parameters due to sampling difficulties. We discuss new developments in modeling and measurement, including the implications of including soil water potential in the Craig–Gordon modeling framework. The stable isotopes of soil water vapor are useful tracers of hydrologic processes occurring in the vadose zone. The measurement of soil water vapor isotopic composition (δ18O, δ2H) is challenging due to difficulties inherent in sampling the vadose zone airspace in situ. Historically, these parameters have therefore been modeled, as opposed to directly measured, and typically soil water vapor is treated as being in isotopic equilibrium with liquid soil water. We reviewed the measurement and modeling of soil water vapor isotopes, with implications for studies of the soil–plant–atmosphere continuum. We also investigated a case study with in situ measurements from a soil profile in a semiarid African savanna, which supports the assumption of liquid–vapor isotopic equilibrium. A contribution of this work is to introduce the effect of soil water potential (Ѱ) on kinetic fractionation during soil evaporation within the Craig–Gordon modeling framework. Including Ѱ in these calculations becomes important for relatively dry soils (Ѱ < −10 MPa). Additionally, we assert that the recent development of laser-based isotope analytical systems may allow regular in situ measurement of the vadose zone isotopic composition of water in the vapor phase. Wet soils pose particular sampling difficulties, and novel techniques are being developed to address these issues.Item Uncertainties in the assessment of the isotopic composition of surface fluxes: A direct comparison of techniques using laser-based water vapor isotope analyzers(2012-08) Good, Stephen P.; Soderberg, Keir; Wang, Lixin; Caylor, Kelly K.The isotopic composition of surface fluxes is a key environmental tracer currently estimated with a variety of methods, including: Keeling mixing models, the flux-gradient technique, and eddy covariance. We present a direct inter-comparison of these three methods used to estimate the isotopic ratio of water vapor in surface fluxes (δET) over half-hour periods, with a focus on the statistical uncertainty of each method image We develop expressions for image a function of instrument precision, sample size, and atmospheric conditions. Uncertainty estimators are validated with high frequency (1 Hz) data from multiple configurations of commercial off-axis integrated cavity output spectroscopy (ICOS) systems. We find measurement techniques utilizing the high frequency capabilities of ICOS system outperform those methods where a single average of the isotopic composition is obtained at each height, with improvements attributed to large sample counts and increased variation in observed concentrations. Analytically, and with supporting data, we show that over 30 minute periods the Keeling plot and flux-gradient techniques produce nearly identicalδET and image values, while eddy covariance calculations always introduce more uncertainty given the same high frequency data. This additional uncertainty is proportional to the reciprocal of the correlation coefficient between vertical wind speed and water vapor mixing ratio. Finally, given the inverse relationship between δET uncertainties and the range of water vapor observed, we propose that experimental designs should attempt to maximize both sample count and the coefficient of variation in atmospheric water vapor.Item Using atmospheric trajectories to model the isotopic composition of rainfall in central Kenya(2013-03) Soderberg, Keir; Good, Stephen P.; O'Connor, Molly; Wang, Lixin; Ryan, Kathleen; Caylor, Kelly K.The isotopic composition of rainfall (δ2H and δ18O) is an important tracer in studies of the ecohydrology, plant physiology, climate and biogeochemistry of past and present ecosystems. The overall continental and global patterns in precipitation isotopic composition are fairly well described by condensation temperature and Rayleigh fractionation during rainout. However, these processes do not fully explain the isotopic variability in the tropics, where intra-storm and meso-scale dynamics may dominate. Here we explore the use of atmospheric back-trajectory modeling and associated meteorological variables to explain the large variability observed in the isotopic composition of individual rain events at the study site in central Kenya. Individual rain event samples collected at the study site (n = 41) range from −51‰ to 31‰ for δ2H and the corresponding monthly values (rain volume-weighted) range from −15‰ to 15‰. Using the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model, we map back-trajectories for all individual rain hours occurring at a research station in central Kenya from March 2010 through February 2012 (n = 544). A multiple linear regression analysis demonstrates that a large amount of variation in the isotopic composition of rainfall can be explained by two variables readily obtained from the HYSPLIT model: (1) solar radiation along the trajectory for 48 hours prior to the event, and (2) distance covered over land. We compare the measurements and regression model results to the isotopic composition expected from simple Rayleigh distillation along each trajectory. The empirical relationship described here has applications across temporal scales. For example, it could be used to help predict short-term changes in the isotopic composition of plant-available water in the absence of event-scale sampling. One can also reconstruct monthly, seasonal and annual weighted mean precipitation isotope signatures for a single location based only on hourly rainfall data and HYSPLIT model results. At the study site in East Africa, the annual weighted mean δ2H from measured and modeled values are −7.6‰ and −7.4‰, respectively, compared to −18‰ predicted for the study site by the Online Isotopes in Precipitation Calculator.