Global synthesis of vegetation control on evapotranspiration partitioning

If you need an accessible version of this item, please email your request to digschol@iu.edu so that they may create one and provide it to you.
Date
2014-10
Language
American English
Embargo Lift Date
Department
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Abstract

Evapotranspiration (ET) is an important component of the global hydrological cycle. However, to what extent transpiration ratios (T/ET) are controlled by vegetation and the mechanisms of global-scale T/ET variations are not clear. We synthesized all the published papers that measured at least two of the three components (E, T, and ET) and leaf area index (LAI) simultaneously. Nonlinear relationships between T/ET and LAI were identified for both the overall data set and agricultural or natural data subsets. Large variations in T/ET occurred across all LAI ranges with wider variability at lower LAI. For a given LAI, higher T/ET was observed during later vegetation growing stage within a season. We developed a function relating T/ET to the growing stage relative to the timing of peak LAI. LAI and growing stage collectively explained 43% of the variations in the global T/ET data set, providing a new way to interpret and model global T/ET variability.

Description
Author's manuscript made available in accordance with the publisher's policy.
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Wang, L., Good, S. P., & Caylor, K. K. (2014). Global synthesis of vegetation control on evapotranspiration partitioning. Geophysical Research Letters, 41(19), 6753-6757.
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Source
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}