Ecosystem-scale spatial heterogeneity of stable isotopes of soil nitrogen in African savannas

If you need an accessible version of this item, please email your request to digschol@iu.edu so that they may create one and provide it to you.
Date
2013-04
Language
American English
Embargo Lift Date
Department
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Abstract

Soil 15N is a natural tracer of nitrogen (N) cycling. Its spatial distribution is a good indicator of processes that are critical to N cycling and of their controlling factors integrated both in time and space. The spatial distribution of soil δ15N and its underlying drivers at sub-kilometer scales are rarely investigated. This study utilizes two sites (dry vs. wet) from a megatransect in southern Africa encompassing locations with similar soil substrate but different rainfall and vegetation, to explore the effects of soil moisture and vegetation distribution on ecosystem-scale patterns of soil δ15N. A 300-m long transect was set up at each site and surface soil samples were randomly collected for analyses of δ15N, %N and nitrate content. At each soil sampling location the presence of grasses, woody plants, Acacia species (potential N fixer) as well as soil moisture levels were recorded. A spatial pattern of soil δ15N existed at the dry site, but not at the wet site. Woody cover distribution determined the soil δ15N spatial pattern at ecosystem-scale; however, the two Acacia species did not contribute to the spatial pattern of soil δ15N. Grass cover was negatively correlated with soil δ15N at both sites owing to the lower foliar δ15N values of grasses. Soil moisture did not play a role in the spatial pattern of soil δ15N at either site. These results suggest that vegetation distribution, directly, and water availability, indirectly, affect the spatial patterns of soil δ15N through their effects on woody plant and grass distributions.

Description
Author's manuscript made available in accordance with the publisher's policy.
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Wang, L., Okin, G. S., D’Odorico, P., Caylor, K. K., & Macko, S. A. (2013). Ecosystem-scale spatial heterogeneity of stable isotopes of soil nitrogen in African savannas. Landscape ecology, 28(4), 685-698.
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Source
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}