- Browse by Author
IUPUI Research Day 2016
Permanent URI for this collection
A program describing the Research Day 2016 events and posters is available from: http://hdl.handle.net/1805/9288.
Browse
Browsing IUPUI Research Day 2016 by Author "Abeysekera, Irushi"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Can Epigallocatechin gallate (EGCG) Treatment Rescue Hippocampal-Dependent Cognitive Function in a Down Syndrome Mouse Model?(Office of the Vice Chancellor for Research, 2016-04-08) East, Audrey; Stringer, Megan; Abeysekera, Irushi; Goodlett, Charles R.; Roper, Randall J.Down Syndrome (DS) is caused by the trisomy of human chromosome 21 (Hsa21). Trisomy 21 can cause various behavioral, cognitive, learning and memory deficits. Deficits in hippocampal structure and function have been identified in mouse models of DS and are implicated in cognitive and learning impairments. Mouse models have suggested that deficits in cognitive function are associated with overexpression of Dyrk1a, a gene on Hsa21 found in three copies of individuals with DS. Dyrk1a is a gene that is involved in brain development and function. Ts65Dn DS model mice exhibit trisomy for approximately half of the genes on Hsa21 including Dyrk1a and exhibit cognitive and learning impairments. We are using Ts65Dn mice to test the effects of Epigallocatechin gallate (EGCG), a Dyrk1a inhibitor, on Dyrk1a activity and cognitive function. We hypothesize that EGCG will reduce Dyrk1a activity in the hippocampus and improve hippocampal-dependent spatial learning and memory in the Morris water maze place learning task in Ts65Dn mice. The mice were given daily EGCG treatment (200 mg/kg per day) by means of oral gavage beginning on postnatal day 54 and continuing throughout water maze testing (postnatal days 67-74). Measures of spatial learning included latency and path length to find a submerged platform during acquisition trials (postnatal days 67-73). Memory for the previously learned location of the platform was assessed on a probe trial (postnatal day 74) in which the platform was removed and the amount of time spent swimming in the area of the tank previously containing the platform was measured. These measures allowed us to analyze the mice’s ability to learn and remember the position of the platform and to spatially orient themselves. Preliminary data indicates that EGCG treatment may not be an effective treatment for the spatial learning and memory deficits evident in this mouse model of DS.Item Correction of cerebellar movement related deficits by normalizing Dyrk1a copy number in the Ts65Dn mouse model for Down syndrome(Office of the Vice Chancellor for Research, 2016-04-08) Patel, Roshni; Stringer, Megan; Abeysekera, Irushi; Roper, Randall J.; Goodlett, Charles R.Elucidation of the underlying mechanisms involved in brain related deficits of Down syndrome (DS) would be useful for consideration of therapeutic interventions. Several DSspecific phenotypes have been hypothesized to be linked to altered expression or function of specific trisomic genes. One such gene of interest is D YRK1A , which has been implicated in behavioral functions of the hippocampus and cerebellum. The Ts65Dn mouse model for DS includes a triplication of D yrk1a in addition to a triplication of >100 other human chromosome 21 mouse orthologs. To evaluate the role of D yrk1a in cerebellar function, we have genetically normalized the D yrk1a copy number in otherwise trisomicTs65Dn mice and reduced D yrk1a copy number in otherwise euploid mice (2N) for a total of 3 alternative genetic doses of D yrk1a: EuploidDyrk1a +/+ , EuploidDyrk1a +/, Ts65DnDyrk1a +/+/+ , and Ts65DnDyrk1a +/+/. Cerebellar movementrelated function in these knockdown models is being assessed through a novel behavioral balance beam task. Additionally, levels of D yrk1a activity in the cerebellum for all genotypes were analyzed by HPLC. We have previously demonstrated that Ts65DnDyrk1a +/+/+ mice perform worse in the balance beam task in comparison to EuploidDyrk1a +/+ mice. Preliminary results of the current study do not indicate such a difference among Ts65DnDyrk1a +/+/+ mice in comparison to EuploidDyrk1a +/+ mice. We hypothesize that the lack of replication of the previous findings may be due to differences in postweaning housing environments. Mice in the previous study were singlehoused, whereas mice in the present study were grouphoused, which may help mitigate motor deficits in the trisomic mice. Additionally, current trends display a deficit in balance beam performance of both the EuploidDyrk1a +/and the Ts65DnDyrk1a +/+/groups, which suggests that reducing the copy number of D yrk1a by one may have detrimental effects on motor coordination. Concomitant analysis of the balance beam performances and Dyrk1a activity levels may indicate the sensitivity of the balance beam task to assess the role Dyrk1a activity in cerebellar function.Item The Effect of 200mg/kg EGCG Oral Gavage Treatment on the Cerebellar-Dependent Behavior in a Down Syndrome Mouse Model(Office of the Vice Chancellor for Research, 2016-04-08) Dalman, Noriel; Stringer, Megan; Abeysekera, Irushi; East, Audrey; Patel, Roshni; Roper, Randall J.; Goodlett, Charles R.Trisomy 21 (Ts21) causes deficits in motor and cognitive ability that are hallmark phenotypes in Down syndrome (DS). The Ts65Dn mouse model of DS has about 50% of the orthologous genes that are triplicated from human chromosome 21, including the Dual specificity tyrosinephosphorylation-regulated kinase 1A (Dyrk1A) gene. Three copies of Dyrk1A have been implicated in the motor and cognitive deficits and altered cerebellar structure and function may contribute these impairments in Ts65Dn mice. Epigallocatechin 3-gallate (EGCG) is a catechin found in green tea and an inhibitor of Dyrk1A activity. We hypothesize that a 200mg/kg EGCG treatment given by oral gavage will inhibit Dyrk1A activity in the cerebellum of Ts65Dn mice and rescue deficits in motor coordination while performing the balance beam task. Evidence of improvement in this task would be observed as a reduction of paw slips as the animal traverses across beams of varying widths. In previous studies, EGCG treatment was placed in the animal’s water to be consumed but EGCG rapidly degrades in solution and it is difficult to control treatment doses via treatment in drinking water, due to each animal’s consumption behavior. This study utilized a daily oral gavage treatment of EGCG to control the dose and limits loss due to degradation. Results to date indicate that the Ts65Dn mice show deficits on the balance beam task relative to the euploid mice, particularly at the narrowest beam width used. The EGCG treatment does not appear to improve the performance of the Ts65Dn mice, though the lack of observed effects of EGCG may be due to the relatively low numbers of Ts65Dn-EGCG treated mice that have completed testing so far. One notable trend is that we will continue to test additional mice to gain sufficient power to determine conclusively whether EGCG improves motor coordination performance in Ts65Dn mice.