The interaction between RIPK1 and FADD controls perinatal lethality and inflammation
Date
Language
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Abstract
Perturbation of the apoptosis and necroptosis pathways critically influences embryogenesis. Receptor-associated protein kinase-1 (RIPK1) interacts with Fas-associated via death domain (FADD)-caspase-8-cellular Flice-like inhibitory protein long (cFLIPL) to regulate both extrinsic apoptosis and necroptosis. Here, we describe Ripk1-mutant animals (Ripk1R588E [RE]) in which the interaction between FADD and RIPK1 is disrupted, leading to embryonic lethality. This lethality is not prevented by further removal of the kinase activity of Ripk1 (Ripk1R588E K45A [REKA]). Both Ripk1RE and Ripk1REKA animals survive to adulthood upon ablation of Ripk3. While embryonic lethality of Ripk1RE mice is prevented by ablation of the necroptosis effector mixed lineage kinase-like (MLKL), animals succumb to inflammation after birth. In contrast, Mlkl ablation does not prevent the death of Ripk1REKA embryos, but animals reach adulthood when both MLKL and caspase-8 are removed. Ablation of the nucleic acid sensor Zbp1 largely prevents lethality in both Ripk1RE and Ripk1REKA embryos. Thus, the RIPK1-FADD interaction prevents Z-DNA binding protein-1 (ZBP1)-induced, RIPK3-caspase-8-mediated embryonic lethality, affected by the kinase activity of RIPK1.