Quantitative synthesis on the ecosystem services of cover crops

If you need an accessible version of this item, please email your request to digschol@iu.edu so that they may create one and provide it to you.
Date
2018-10
Language
English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Elsevier
Abstract

The maintenance of soil health in agro-ecosystems is essential for sustaining agricultural productivity. Through its positive impacts on various soil physical and biological processes, cover cropping can be an important component of sustainable agricultural production systems. However, the practice of cover cropping can be complex, and possible trade-offs between the benefits and side effects of cover crops have not been examined. To evaluate these benefits and potential trade-offs, we quantitatively synthesized different ecosystem services provided by cover crops (e.g., erosion control, water quality regulation, soil moisture retention, accumulation of soil organic matter and microbial biomass, greenhouse gas (GHG) emission, weed and pest control, as well as yield of the subsequent cash crop) using data from previous publications. We used a simple indicator (δ), defined as the ratio of an observed variable (i.e., ecosystem service) under cover crop and under fallow condition, to evaluate the impacts of cover crops on a given ecosystem service. Our results showed that cover crops provided beneficial ecosystem services in most cases, except for an increase in GHG emission (δCO2 = 1.46 ± 0.47 and δN2 O = 1.49 ± 1.22;  ± SD) and in pest (nematode) incidence (δnematode abundance = 1.29 ± 1.61). It is also important to highlight that, in some cases, tillage could offset the extent of ecosystem service benefits provided by cover crops. Based on this synthesis, we argue that cover crops should be incorporated into modern agricultural practices because of the many environmental benefits they offer, particularly the maintenance of soil and ecosystem health. More importantly, there was generally an increase in cash crop yield with cover cropping (δyield = 1.15 ± 0.75), likely due to improvement in various soil processes. Despite its benefits, the complexity of cover crop management should not be overlooked, and site-specific factors such as climate, soil type, cover crop species and tillage practices must be considered in order to optimize the benefits of cover cropping. In addition to crop yield, detailed economic analyses are needed to calculate the direct (e.g., reduction in the amount of chemical fertilizer) and indirect monetary benefits (e.g., the improvement of soil quality) of cover crops. Such a comprehensive analysis could serve as incentive for producers to integrate cover crops into their management practices.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Daryanto, S., Fu, B., Wang, L., Jacinthe, P.-A., & Zhao, W. (2018). Quantitative synthesis on the ecosystem services of cover crops. Earth-Science Reviews, 185, 357–373. https://doi.org/10.1016/j.earscirev.2018.06.013
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Earth-Science Reviews
Source
Author
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Author's manuscript
Full Text Available at
This item is under embargo {{howLong}}