Connectivity‐informed adaptive regularization for generalized outcomes

dc.contributor.authorBrzyski, Damian
dc.contributor.authorKaras, Marta
dc.contributor.authorAnces, Beau M.
dc.contributor.authorDzemidzic, Mario
dc.contributor.authorGoñi, Joaquín
dc.contributor.authorRandolph, Timothy W.
dc.contributor.authorHarezlak, Jaroslaw
dc.contributor.departmentNeurology, School of Medicineen_US
dc.date.accessioned2021-12-28T22:38:16Z
dc.date.available2021-12-28T22:38:16Z
dc.date.issued2021-02
dc.description.abstractOne of the challenging problems in neuroimaging is the principled incorporation of information from different imaging modalities. Data from each modality are frequently analyzed separately using, for instance, dimensionality reduction techniques, which result in a loss of mutual information. We propose a novel regularization method, generalized ridgified Partially Empirical Eigenvectors for Regression (griPEER), to estimate associations between the brain structure features and a scalar outcome within the generalized linear regression framework. griPEER improves the regression coefficient estimation by providing a principled approach to use external information from the structural brain connectivity. Specifically, we incorporate a penalty term, derived from the structural connectivity Laplacian matrix, in the penalized generalized linear regression. In this work, we address both theoretical and computational issues and demonstrate the robustness of our method despite incomplete information about the structural brain connectivity. In addition, we also provide a significance testing procedure for performing inference on the estimated coefficients. Finally, griPEER is evaluated both in extensive simulation studies and using clinical data to classify HIV+ and HIV− individuals.en_US
dc.eprint.versionAuthor's manuscripten_US
dc.identifier.citationBrzyski, D., Karas, M., Ances, B. M., Dzemidzic, M., Goñi, J., Randolph, T. W., & Harezlak, J. (2021). Connectivity‐informed adaptive regularization for generalized outcomes. Canadian Journal of Statistics, 49(1), 203–227. https://doi.org/10.1002/cjs.11606en_US
dc.identifier.issn0319-5724, 1708-945Xen_US
dc.identifier.urihttps://hdl.handle.net/1805/27211
dc.language.isoen_USen_US
dc.publisherWileyen_US
dc.relation.isversionof10.1002/cjs.11606en_US
dc.relation.journalCanadian Journal of Statisticsen_US
dc.rightshttps://hdl.handle.net/1805/27211
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.sourceOtheren_US
dc.subjectBrain connectivityen_US
dc.subjectbrain structureen_US
dc.subjectgeneralized linear regressionen_US
dc.subjectLaplacian matrixen_US
dc.subjectpenalized regressionen_US
dc.subjectstructured penaltiesen_US
dc.titleConnectivity‐informed adaptive regularization for generalized outcomesen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Brzyski2021Connectivity-CCBYNC.pdf
Size:
2.79 MB
Format:
Adobe Portable Document Format
Description:
Article
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.99 KB
Format:
Item-specific license agreed upon to submission
Description: