Con-S2V: A Generic Framework for Incorporating Extra-Sentential Context into Sen2Vec

dc.contributor.authorSaha, Tanay Kumar
dc.contributor.authorJoty, Shafiq
dc.contributor.authorAl Hasan, Mohammad
dc.contributor.departmentComputer and Information Science, School of Scienceen_US
dc.date.accessioned2018-08-30T18:31:56Z
dc.date.available2018-08-30T18:31:56Z
dc.date.issued2017
dc.description.abstractWe present a novel approach to learn distributed representation of sentences from unlabeled data by modeling both content and context of a sentence. The content model learns sentence representation by predicting its words. On the other hand, the context model comprises a neighbor prediction component and a regularizer to model distributional and proximity hypotheses, respectively. We propose an online algorithm to train the model components jointly. We evaluate the models in a setup, where contextual information is available. The experimental results on tasks involving classification, clustering, and ranking of sentences show that our model outperforms the best existing models by a wide margin across multiple datasets.en_US
dc.eprint.versionAuthor's manuscripten_US
dc.identifier.citationSaha, T. K., Joty, S., & Hasan, M. A. (2017). Con-S2V: A Generic Framework for Incorporating Extra-Sentential Context into Sen2Vec. In Machine Learning and Knowledge Discovery in Databases (pp. 753–769). Springer, Cham. https://doi.org/10.1007/978-3-319-71249-9_45en_US
dc.identifier.urihttps://hdl.handle.net/1805/17255
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.isversionof10.1007/978-3-319-71249-9_45en_US
dc.relation.journalMachine Learning and Knowledge Discovery in Databasesen_US
dc.rightsPublisher Policyen_US
dc.sourceAuthoren_US
dc.subjectSen2Vecen_US
dc.subjectextra-sentential contexten_US
dc.subjectembedding of sentencesen_US
dc.titleCon-S2V: A Generic Framework for Incorporating Extra-Sentential Context into Sen2Vecen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Saha_2017_CON.pdf
Size:
315.25 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.99 KB
Format:
Item-specific license agreed upon to submission
Description: