Enhancing clinical decision-making: An externally validated machine learning model for predicting isocitrate dehydrogenase mutation in gliomas using radiomics from presurgical magnetic resonance imaging

Date
2024-10-03
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Oxford University Press
Can't use the file because of accessibility barriers? Contact us with the title of the item, permanent link, and specifics of your accommodation need.
Abstract

Background: Glioma, the most prevalent primary brain tumor, poses challenges in prognosis, particularly in the high-grade subclass, despite advanced treatments. The recent shift in tumor classification underscores the crucial role of isocitrate dehydrogenase (IDH) mutation status in the clinical care of glioma patients. However, conventional methods for determining IDH status, including biopsy, have limitations. Exploring the use of machine learning (ML) on magnetic resonance imaging to predict IDH mutation status shows promise but encounters challenges in generalizability and translation into clinical practice because most studies either use single institution or homogeneous datasets for model training and validation. Our study aims to bridge this gap by using multi-institution data for model validation.

Methods: This retrospective study utilizes data from large, annotated datasets for internal (377 cases from Yale New Haven Hospitals) and external validation (207 cases from facilities outside Yale New Haven Health). The 6-step research process includes image acquisition, semi-automated tumor segmentation, feature extraction, model building with feature selection, internal validation, and external validation. An extreme gradient boosting ML model predicted the IDH mutation status, confirmed by immunohistochemistry.

Results: The ML model demonstrated high performance, with an Area under the Curve (AUC), Accuracy, Sensitivity, and Specificity in internal validation of 0.862, 0.865, 0.885, and 0.713, and external validation of 0.835, 0.851, 0.850, and 0.847.

Conclusions: The ML model, built on a heterogeneous dataset, provided robust results in external validation for the prediction task, emphasizing its potential clinical utility. Future research should explore expanding its applicability and validation in diverse global healthcare settings.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Lost J, Ashraf N, Jekel L, et al. Enhancing clinical decision-making: An externally validated machine learning model for predicting isocitrate dehydrogenase mutation in gliomas using radiomics from presurgical magnetic resonance imaging. Neurooncol Adv. 2024;6(1):vdae157. Published 2024 Oct 3. doi:10.1093/noajnl/vdae157
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Neuro-Oncology Advances
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Final published version
Full Text Available at
This item is under embargo {{howLong}}