CDMS Analysis of Intact 19S, 20S, 26S, and 30S Proteasomes: Evidence for Higher-Order 20S Assemblies at a Low pH†

If you need an accessible version of this item, please submit a remediation request.
Date
2023
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
American Chemical Society
Abstract

Charge detection mass spectrometry (CDMS) was examined as a means of studying proteasomes. To this end, the following masses of the 20S, 19S, 26S, and 30S proteasomes from Saccharomyces cerevisiae (budding yeast) were measured: m(20S) = 738.8 ± 2.9 kDa, m(19S) = 926.2 ± 4.8 kDa, m(26S) = 1,637.0 ± 7.6 kDa, and m(30S) = 2,534.2 ± 10.8 kDa. Under some conditions, larger (20S)x (where x = 1 to ∼13) assemblies are observed; the 19S regulatory particle also oligomerizes, but to a lesser extent, forming (19S)x complexes (where x = 1 to 4, favoring the x = 3 trimer). The (20S)x oligomers are favored in vitro, as the pH of the solution is lowered (from 7.0 to 5.4, in a 20 mM ammonium acetate solution) and may be related to in vivo proteasome storage granules that are observed under carbon starvation. From measurements of m(20S)x (x = 1 to ∼13) species, it appears that each multimer retains all 28 proteins of the 20S complex subunit. Several types of structures that might explain the formation of (20S)x assemblies are considered. We stress that each structural type [hypothetical planar, raft-like geometries (where individual proteasomes associate through side-by-side interactions); elongated, rodlike geometries (where subunits are bound end-to-end); and geometries that are roughly spherical (arising from aggregation through nonspecific subunit interactions)] is highly speculative but still interesting to consider, and a short discussion is provided. The utility of CDMS for characterizing proteasomes and related oligomers is discussed.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Anthony AJ, Gautam AKS, Miller LM, et al. CDMS Analysis of Intact 19S, 20S, 26S, and 30S Proteasomes: Evidence for Higher-Order 20S Assemblies at a Low pH† [published correction appears in Anal Chem. 2024 Feb 6;96(5):2273. doi: 10.1021/acs.analchem.4c00103]. Anal Chem. 2023;95(33):12209-12215. doi:10.1021/acs.analchem.3c00472
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Analytical Chemistry
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Author's manuscript
Full Text Available at
This item is under embargo {{howLong}}