Quantitative trait loci identification for brain endophenotypes via new additive model with random networks

If you need an accessible version of this item, please email your request to digschol@iu.edu so that they may create one and provide it to you.
Date
2018-09
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Oxford University Press
Abstract

Motivation:

The identification of quantitative trait loci (QTL) is critical to the study of causal relationships between genetic variations and disease abnormalities. We focus on identifying the QTLs associated to the brain endophenotypes in imaging genomics study for Alzheimer's Disease (AD). Existing research works mainly depict the association between single nucleotide polymorphisms (SNPs) and the brain endophenotypes via the linear methods, which may introduce high bias due to the simplicity of the models. Since the influence of QTLs on brain endophenotypes is quite complex, it is desired to design the appropriate non-linear models to investigate the associations of genotypes and endophenotypes. Results:

In this paper, we propose a new additive model to learn the non-linear associations between SNPs and brain endophenotypes in Alzheimer's disease. Our model can be flexibly employed to explain the non-linear influence of QTLs, thus is more adaptive for the complex distribution of the high-throughput biological data. Meanwhile, as an important computational learning theory contribution, we provide the generalization error analysis for the proposed approach. Unlike most previous theoretical analysis under independent and identically distributed samples assumption, our error bound is based on m-dependent observations, which is more appropriate for the high-throughput and noisy biological data. Experiments on the data from Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort demonstrate the promising performance of our approach for identifying biological meaningful SNPs.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Wang, X., Chen, H., Yan, J., Nho, K., Risacher, S. L., Saykin, A. J., … ADNI (2018). Quantitative trait loci identification for brain endophenotypes via new additive model with random networks. Bioinformatics (Oxford, England), 34(17), i866–i874. doi:10.1093/bioinformatics/bty557
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Bioinformatics
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
This item is under embargo {{howLong}}