Derivation, Validation, and Clinical Relevance of a Pediatric Sepsis Phenotype With Persistent Hypoxemia, Encephalopathy, and Shock

Abstract

Objectives: Untangling the heterogeneity of sepsis in children and identifying clinically relevant phenotypes could lead to the development of targeted therapies. Our aim was to analyze the organ dysfunction trajectories of children with sepsis-associated multiple organ dysfunction syndrome (MODS) to identify reproducible and clinically relevant sepsis phenotypes and determine if they are associated with heterogeneity of treatment effect (HTE) to common therapies.

Design: Multicenter observational cohort study.

Setting: Thirteen PICUs in the United States.

Patients: Patients admitted with suspected infections to the PICU between 2012 and 2018.

Interventions: None.

Measurements and main results: We used subgraph-augmented nonnegative matrix factorization to identify candidate trajectory-based phenotypes based on the type, severity, and progression of organ dysfunction in the first 72 hours. We analyzed the candidate phenotypes to determine reproducibility as well as prognostic, therapeutic, and biological relevance. Overall, 38,732 children had suspected infection, of which 15,246 (39.4%) had sepsis-associated MODS with an in-hospital mortality of 10.1%. We identified an organ dysfunction trajectory-based phenotype (which we termed persistent hypoxemia, encephalopathy, and shock) that was highly reproducible, had features of systemic inflammation and coagulopathy, and was independently associated with higher mortality. In a propensity score-matched analysis, patients with persistent hypoxemia, encephalopathy, and shock phenotype appeared to have HTE and benefit from adjuvant therapy with hydrocortisone and albumin. When compared with other high-risk clinical syndromes, the persistent hypoxemia, encephalopathy, and shock phenotype only overlapped with 50%-60% of patients with septic shock, moderate-to-severe pediatric acute respiratory distress syndrome, or those in the top tier of organ dysfunction burden, suggesting that it represents a nonsynonymous clinical phenotype of sepsis-associated MODS.

Conclusions: We derived and validated the persistent hypoxemia, encephalopathy, and shock phenotype, which is highly reproducible, clinically relevant, and associated with HTE to common adjuvant therapies in children with sepsis.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Sanchez-Pinto LN, Bennett TD, Stroup EK, et al. Derivation, Validation, and Clinical Relevance of a Pediatric Sepsis Phenotype With Persistent Hypoxemia, Encephalopathy, and Shock. Pediatr Crit Care Med. 2023;24(10):795-806. doi:10.1097/PCC.0000000000003292
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Pediatric Critical Care Medicine
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Final published version
Full Text Available at
This item is under embargo {{howLong}}