Integrating molecular profiles into clinical frameworks through the Molecular Oncology Almanac to prospectively guide precision oncology

dc.contributor.authorReardon, Brendan
dc.contributor.authorMoore, Nathanael D.
dc.contributor.authorMoore, Nicholas S.
dc.contributor.authorKofman, Eric
dc.contributor.authorAlDubayan, Saud H.
dc.contributor.authorCheung, Alexander T.M.
dc.contributor.authorConway, Jake
dc.contributor.authorElmarakeby, Haitham
dc.contributor.authorImamovic, Alma
dc.contributor.authorKamran, Sophia C.
dc.contributor.authorKeenan, Tanya
dc.contributor.authorKeliher, Daniel
dc.contributor.authorKonieczkowski, David J.
dc.contributor.authorLiu, David
dc.contributor.authorMouw, Kent W.
dc.contributor.authorPark, Jihye
dc.contributor.authorVokes, Natalie I.
dc.contributor.authorDietlein, Felix
dc.contributor.authorVan Allen, Eliezer M.
dc.contributor.departmentMedicine, School of Medicineen_US
dc.date.accessioned2023-06-22T12:30:17Z
dc.date.available2023-06-22T12:30:17Z
dc.date.issued2021
dc.description.abstractTumor molecular profiling of single gene-variant ('first-order') genomic alterations informs potential therapeutic approaches. Interactions between such first-order events and global molecular features (for example, mutational signatures) are increasingly associated with clinical outcomes, but these 'second-order' alterations are not yet accounted for in clinical interpretation algorithms and knowledge bases. We introduce the Molecular Oncology Almanac (MOAlmanac), a paired clinical interpretation algorithm and knowledge base to enable integrative interpretation of multimodal genomic data for point-of-care decision making and translational-hypothesis generation. We benchmarked MOAlmanac to a first-order interpretation method across multiple retrospective cohorts and observed an increased number of clinical hypotheses from evaluation of molecular features and profile-to-cell line matchmaking. When applied to a prospective precision oncology trial cohort, MOAlmanac nominated a median of two therapies per patient and identified therapeutic strategies administered in 47% of patients. Overall, we present an open-source computational method for integrative clinical interpretation of individualized molecular profiles.en_US
dc.eprint.versionAuthor's manuscripten_US
dc.identifier.citationReardon B, Moore ND, Moore NS, et al. Integrating molecular profiles into clinical frameworks through the Molecular Oncology Almanac to prospectively guide precision oncology. Nat Cancer. 2021;2(10):1102-1112. doi:10.1038/s43018-021-00243-3en_US
dc.identifier.urihttps://hdl.handle.net/1805/33931
dc.language.isoen_USen_US
dc.publisherSpringer Natureen_US
dc.relation.isversionof10.1038/s43018-021-00243-3en_US
dc.relation.journalNature Canceren_US
dc.rightsPublisher Policyen_US
dc.sourcePMCen_US
dc.subjectGenomicsen_US
dc.subjectNeoplasmsen_US
dc.subjectPrecision medicineen_US
dc.titleIntegrating molecular profiles into clinical frameworks through the Molecular Oncology Almanac to prospectively guide precision oncologyen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
nihms-1794969.pdf
Size:
2.77 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.99 KB
Format:
Item-specific license agreed upon to submission
Description: