Quantum metrology with parametric amplifier-based photon correlation interferometers

Date
2014
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Springer Nature
Can't use the file because of accessibility barriers? Contact us with the title of the item, permanent link, and specifics of your accommodation need.
Abstract

Conventional interferometers usually utilize beam splitters for wave splitting and recombination. These interferometers are widely used for precision measurement. Their sensitivity for phase measurement is limited by the shot noise, which can be suppressed with squeezed states of light. Here we study a new type of interferometer in which the beam splitting and recombination elements are parametric amplifiers. We observe an improvement of 4.1±0.3 dB in signal-to-noise ratio compared with a conventional interferometer under the same operating condition, which is a 1.6-fold enhancement in rms phase measurement sensitivity beyond the shot noise limit. The improvement is due to signal enhancement. Combined with the squeezed state technique for shot noise suppression, this interferometer promises further improvement in sensitivity. Furthermore, because nonlinear processes are involved in this interferometer, we can couple a variety of different waves and form new types of hybrid interferometers, opening a door for many applications in metrology.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Hudelist F, Kong J, Liu C, Jing J, Ou ZY, Zhang W. Quantum metrology with parametric amplifier-based photon correlation interferometers. Nat Commun. 2014;5:3049. doi:10.1038/ncomms4049
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Nature Communications
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Final published version
Full Text Available at
This item is under embargo {{howLong}}