Dirac type operators on the quantum solid torus with global boundary conditions
dc.contributor.author | Klimek, Slawomir | |
dc.contributor.author | McBride, Matt | |
dc.contributor.department | Mathematical Sciences, School of Science | en_US |
dc.date.accessioned | 2022-04-01T20:40:00Z | |
dc.date.available | 2022-04-01T20:40:00Z | |
dc.date.issued | 2020-04 | |
dc.description.abstract | We define a noncommutative space we call the quantum solid torus. It is an example of a noncommutative manifold with a noncommutative boundary. We study quantum Dirac type operators subject to Atiyah-Patodi-Singer like boundary conditions on the quantum solid torus. We show that such operators have compact inverse, which means that the corresponding boundary value problem is elliptic. | en_US |
dc.eprint.version | Author's manuscript | en_US |
dc.identifier.citation | Klimek, S., & McBride, M. (2020). Dirac type operators on the quantum solid torus with global boundary conditions. Journal of Mathematical Analysis and Applications, 484(1), 123690. https://doi.org/10.1016/j.jmaa.2019.123690 | en_US |
dc.identifier.uri | https://hdl.handle.net/1805/28379 | |
dc.language.iso | en | en_US |
dc.publisher | Elsevier | en_US |
dc.relation.isversionof | 10.1016/j.jmaa.2019.123690 | en_US |
dc.relation.journal | Journal of Mathematical Analysis and Applications | en_US |
dc.rights | Publisher Policy | en_US |
dc.source | ArXiv | en_US |
dc.subject | noncommutative geometry | en_US |
dc.subject | Dirac operators | en_US |
dc.subject | APS boundary conditions | en_US |
dc.title | Dirac type operators on the quantum solid torus with global boundary conditions | en_US |
dc.type | Article | en_US |