Discrete element modeling of powder flow and laser heating in direct metal laser sintering process

If you need an accessible version of this item, please email your request to digschol@iu.edu so that they may create one and provide it to you.
Date
2017-06
Language
English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Elsevier
Abstract

A novel particle-based discrete element model (DEM) is developed to simulate the whole Direct Metal Laser Sintering (DMLS) process, which includes simplified powder deposition, recoating, laser heating, and holding stages. This model is first validated through the simulation of particle flow and heat conduction in the powder bed, and the simulated results are in good agreement with either experiment in the literature or finite element method. Then the validated model is employed to the DMLS process. The effects of laser power, laser scan speed, and hatch spacing on the temperature distributions in the powder bed are investigated. The results demonstrate that the powder bed temperature rises as the laser power is increased. Increasing laser scan speed and laser hatch spacing will not affect the average temperature increase in the powder bed since energy input is kept same. However, a large hatch spacing may cause non-uniform temperature distribution and microstructure inhomogeneity. The model developed in this study can be used as a design and optimization tool for DMLS process.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Lee, W.-H., Zhang, Y., & Zhang, J. (2017). Discrete element modeling of powder flow and laser heating in direct metal laser sintering process. Powder Technology. https://doi.org/10.1016/j.powtec.2017.04.002
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Powder Technology
Source
Author
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Author's manuscript
Full Text Available at
This item is under embargo {{howLong}}