Prevention of posttraumatic axon sprouting by blocking CRMP2-mediated neurite outgrowth and tubulin polymerization

Date
2012
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Elsevier
Can't use the file because of accessibility barriers? Contact us with the title of the item, permanent link, and specifics of your accommodation need.
Abstract

Epileptogenesis following traumatic brain injury (TBI) is likely due to a combination of increased excitability, disinhibition, and increased excitatory connectivity via aberrant axon sprouting. Targeting these pathways could be beneficial in the prevention and treatment of posttraumatic epilepsy. Here, we tested this possibility using the novel anticonvulsant (R)-N-benzyl 2-acetamido-3-methoxypropionamide ((R)-lacosamide [LCM]), which acts on both voltage-gated sodium channels and collapsin response mediator protein 2 (CRMP2), an axonal growth/guidance protein. LCM inhibited CRMP2-mediated neurite outgrowth, an effect phenocopied by CRMP2 knockdown. Mutation of LCM-binding sites in CRMP2 reduced the neurite inhibitory effect of LCM by ∼8-fold. LCM also reduced CRMP2-mediated tubulin polymerization. Thus, LCM selectively impairs CRMP2-mediated microtubule polymerization, which underlies its neurite outgrowth and branching. To determine whether LCM inhibits axon sprouting in vivo, LCM was injected into rats subjected to partial cortical isolation, an animal model of posttraumatic epileptogenesis that exhibits axon sprouting in cortical pyramidal neurons. Two weeks following injury, excitatory synaptic connectivity of cortical layer V pyramidal neurons was mapped using patch clamp recordings and laser scanning photostimulation of caged glutamate. In comparison with injured control animals, there was a significant decrease in the map size of excitatory synaptic connectivity in LCM-treated rats, suggesting that LCM treatment prevented enhanced excitatory synaptic connectivity due to posttraumatic axon sprouting. These findings suggest, for the first time, that LCM's mode of action involves interactions with CRMP2 to inhibit posttraumatic axon sprouting.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Wilson SM, Xiong W, Wang Y, et al. Prevention of posttraumatic axon sprouting by blocking collapsin response mediator protein 2-mediated neurite outgrowth and tubulin polymerization. Neuroscience. 2012;210:451-466. doi:10.1016/j.neuroscience.2012.02.038
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Neuroscience
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Author's manuscript
Full Text Available at
This item is under embargo {{howLong}}