Impact of acamprosate on plasma amyloid-β precursor protein in youth: a pilot analysis in fragile X syndrome-associated and idiopathic autism spectrum disorder suggests a pharmacodynamic protein marker

If you need an accessible version of this item, please email your request to digschol@iu.edu so that they may create one and provide it to you.
Date
2014-12
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Elsevier
Abstract

BACKGROUND: Understanding of the pathophysiology of autism spectrum disorder (ASD) remains limited. Brain overgrowth has been hypothesized to be associated with the development of ASD. A derivative of amyloid-β precursor protein (APP), secreted APPα (sAPPα), has neuroproliferative effects and has been shown to be elevated in the plasma of persons with ASD compared to control subjects. Reduction in sAPPα holds promise as a novel molecular target of treatment in ASD. Research into the neurochemistry of ASD has repeatedly implicated excessive glutamatergic and deficient GABAergic neurotransmission in the disorder. With this in mind, acamprosate, a novel modulator of glutamate and GABA function, has been studied in ASD. No data is available on the impact of glutamate or GABA modulation on sAPPα function. METHODS: Plasma APP derivative levels pre- and post-treatment with acamprosate were determined in two pilot studies involving youth with idiopathic and fragile X syndrome (FXS)-associated ASD. We additionally compared baseline APP derivative levels between youth with FXS-associated or idiopathic ASD. RESULTS: Acamprosate use was associated with a significant reduction in plasma sAPP(total) and sAPPα levels but no change occurred in Aβ40 or Aβ42 levels in 15 youth with ASD (mean age: 11.1 years). Youth with FXS-associated ASD (n = 12) showed increased sAPPα processing compared to age-, gender- and IQ-match youth with idiopathic ASD (n = 11). CONCLUSIONS: Plasma APP derivative analysis holds promise as a potential biomarker for use in ASD targeted treatment. Reduction in sAPP (total) and sAPPα may be a novel pharmacodynamic property of acamprosate. Future study is required to address limitations of the current study to determine if baseline APP derivative analysis may predict subgroups of persons with idiopathic or FXS-associated ASD who may respond best to acamprosate or to potentially other modulators of glutamate and/or GABA neurotransmission.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Erickson, C. A., Ray, B., Maloney, B., Wink, L. K., Bowers, K., Schaefer, T. L., … Lahiri, D. K. (2014). Impact of Acamprosate on Plasma Amyloid-β Precursor Protein in Youth: A Pilot Analysis in Fragile X Syndrome-Associated and Idiopathic Autism Spectrum Disorder Suggests a Pharmacodynamic Protein Marker. Journal of Psychiatric Research, 59, 220–228. http://doi.org/10.1016/j.jpsychires.2014.07.011
ISSN
1879-1379
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Journal of Psychiatric Research
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Author's manuscript
Full Text Available at
This item is under embargo {{howLong}}