Internal tandem duplication mutations in FLT3 gene augment chemotaxis to Cxcl12 protein by blocking the down-regulation of the Rho-associated kinase via the Cxcl12/Cxcr4 signaling axis

Date
2014-11-07
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
American Society for Biochemistry and Molecular Biology
Abstract

Internal tandem duplication mutations in the Flt3 gene (ITD-FLT3) enhance cell migration toward the chemokine Cxcl12, which is highly expressed in the therapy-protective bone marrow niche, providing a potential mechanism underlying the poor prognosis of ITD-FLT3(+) acute myeloid leukemia. We aimed to investigate the mechanisms linking ITD-FLT3 to increased cell migration toward Cxcl12. Classification of the expression of Cxcl12-regulated genes in ITD-FLT3(+) cells demonstrated that the enhanced migration of ITD-FLT3(+) cells toward Cxcl12 was associated with the differential expression of genes downstream of Cxcl12/Cxcr4, which are functionally distinct from those expressed in ITD-FLT3(-) cells but are independent of the Cxcr4 expression levels. Among these differentially regulated genes, the expression of Rock1 in the ITD-FLT3(+) cells that migrated toward Cxcl12 was significantly higher than in ITD-FLT3(-) cells that migrated toward Cxcl12. In ITD-FLT3(-) cells, Rock1 expression and Mypt1 phosphorylation were transiently up-regulated but were subsequently down-regulated by Cxcl12. In contrast, the presence of ITD-FLT3 blocked the Cxcl12-induced down-regulation of Rock1 and early Mypt1 dephosphorylation. Likewise, the FLT3 ligand counteracted the Cxcl12-induced down-regulation of Rock1 in ITD-FLT3(-) cells, which coincided with enhanced cell migration toward Cxcl12. Rock1 antagonists or Rock1 shRNA abolished the enhanced migration of ITD-FLT3(+) cells toward Cxcl12. Our findings demonstrate that ITD-FLT3 increases cell migration toward Cxcl12 by antagonizing the down-regulation of Rock1 expression. These findings suggest that the aberrant modulation of Rock1 expression and activity induced by ITD-FLT3 may enhance acute myeloid leukemia cell chemotaxis to the therapy-protective bone marrow niche, where Cxcl12 is abundantly expressed.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Onish, C., Mori-Kimachi, S., Hirade, T., Abe, M., Taketani, T., Suzumiya, J., … Fukuda, S. (2014). Internal Tandem Duplication Mutations in FLT3 Gene Augment Chemotaxis to Cxcl12 Protein by Blocking the Down-regulation of the Rho-associated Kinase via the Cxcl12/Cxcr4 Signaling Axis. The Journal of Biological Chemistry, 289(45), 31053–31065. http://doi.org/10.1074/jbc.M114.568287
ISSN
1083-351X
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
The Journal of Biological Chemistry
Rights
Publisher Policy
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
This item is under embargo {{howLong}}