Identifying Candidate Genetic Associations with MRI-Derived AD-Related ROI via Tree-Guided Sparse Learning

dc.contributor.authorHao, Xiaoke
dc.contributor.authorYao, Xiaohui
dc.contributor.authorRisacher, Shannon L.
dc.contributor.authorSaykin, Andrew J.
dc.contributor.authorYu, Jintai
dc.contributor.authorWang, Huifu
dc.contributor.authorTan, Lan
dc.contributor.authorShen, Li
dc.contributor.authorZhang, Daoqiang
dc.contributor.departmentRadiology and Imaging Sciences, School of Medicineen_US
dc.date.accessioned2021-12-13T20:21:39Z
dc.date.available2021-12-13T20:21:39Z
dc.date.issued2019-11
dc.description.abstractImaging genetics has attracted significant interests in recent studies. Traditional work has focused on mass-univariate statistical approaches that identify important single nucleotide polymorphisms (SNPs) associated with quantitative traits (QTs) of brain structure or function. More recently, to address the problem of multiple comparison and weak detection, multivariate analysis methods such as the least absolute shrinkage and selection operator (Lasso) are often used to select the most relevant SNPs associated with QTs. However, one problem of Lasso, as well as many other feature selection methods for imaging genetics, is that some useful prior information, e.g., the hierarchical structure among SNPs, are rarely used for designing a more powerful model. In this paper, we propose to identify the associations between candidate genetic features (i.e., SNPs) and magnetic resonance imaging (MRI)-derived measures using a tree-guided sparse learning (TGSL) method. The advantage of our method is that it explicitly models the complex hierarchical structure among the SNPs in the objective function for feature selection. Specifically, motivated by the biological knowledge, the hierarchical structures involving gene groups and linkage disequilibrium (LD) blocks as well as individual SNPs are imposed as a tree-guided regularization term in our TGSL model. Experimental studies on simulation data and the Alzheimer's Disease Neuroimaging Initiative (ADNI) data show that our method not only achieves better predictions than competing methods on the MRI-derived measures of AD-related region of interests (ROIs) (i.e., hippocampus, parahippocampal gyrus, and precuneus), but also identifies sparse SNP patterns at the block level to better guide the biological interpretation.en_US
dc.eprint.versionAuthor's manuscripten_US
dc.identifier.citationHao, X., Yao, X., Risacher, S. L., Saykin, A. J., Yu, J., Wang, H., Tan, L., Shen, L., & Zhang, D. (2019). Identifying Candidate Genetic Associations with MRI-Derived AD-Related ROI via Tree-Guided Sparse Learning. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 16(6), 1986–1996. https://doi.org/10.1109/TCBB.2018.2833487en_US
dc.identifier.issn1557-9964en_US
dc.identifier.urihttps://hdl.handle.net/1805/27162
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.isversionof10.1109/TCBB.2018.2833487en_US
dc.relation.journalIEEE/ACM transactions on computational biology and bioinformaticsen_US
dc.rightsPublisher Policyen_US
dc.sourcePMCen_US
dc.subjectAlgorithmsen_US
dc.subjectAlzheimer Diseaseen_US
dc.subjectBayes Theoremen_US
dc.titleIdentifying Candidate Genetic Associations with MRI-Derived AD-Related ROI via Tree-Guided Sparse Learningen_US
dc.typeConference proceedingsen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
nihms-1566548.pdf
Size:
1.64 MB
Format:
Adobe Portable Document Format
Description:
Author's Manuscript
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.99 KB
Format:
Item-specific license agreed upon to submission
Description: