Constructing a new nigrostriatal pathway in the Parkinsonian model with bridged neural transplantation in substantia nigra

dc.contributor.authorZhou, Feng C.
dc.contributor.authorChiang, Yung H.
dc.contributor.authorWang, Yun
dc.contributor.departmentAnatomy and Cell Biology, School of Medicineen_US
dc.date.accessioned2020-02-14T20:51:48Z
dc.date.available2020-02-14T20:51:48Z
dc.date.issued1996-11-01
dc.description.abstractThe physical repair and restoration of a completely damaged pathway in the brain has not been achieved previously. In a previous study, using excitatory amino acid bridging and fetal neural transplantation, we demonstrated that a bridged mesencephalic transplant in the substantia nigra generated an artificial nerve pathway that reinnervated the striatum of 6-hydroxydopamine (6-OHDA)-lesioned rats. In the current study, we report that a bridged mesencephalic transplant can anatomically, neurochemically, and functionally reinstate the 6-OHDA-eradicated nigro-striatal pathway. An excitatory amino acid, kainic acid, laid down in a track during the transplant generated a trophic environment that effectively guided the robust growth of transplanted neuronal fibers in a bundle to innervate the distal striatum. Growth occurred at the remarkable speed of approximately 200 microm/d. Two separate and distinct types of dopamine (DA) innervation from the transplant have been achieved for the first time: (1) DA innervation of the striatum, and (2) DA innervation of the pars reticularis of the substantia nigra. In addition, neuronal tracing revealed that reciprocal connections were achieved. The grafted DA neurons in the SNr innervated the host's striatum, whereas the host's striatal neurons, in turn, innervated the graft within 3-8 weeks. Electrochemical volt- ammetry recording revealed the restoration of DA release and clearance in a broad striatal area associated with the DA reinnervation. Furthermore, the amphetamine-induced rotation was attenuated, which indicates that the artificial pathways were motor functional. This study provides additional evidences that our bridged transplantation technique is a potential means for the repair of a completely damaged neuronal pathway.en_US
dc.eprint.versionFinal published versionen_US
dc.identifier.citationZhou, F. C., Chiang, Y. H., & Wang, Y. (1996). Constructing a new nigrostriatal pathway in the Parkinsonian model with bridged neural transplantation in substantia nigra. The Journal of neuroscience : the official journal of the Society for Neuroscience, 16(21), 6965–6974. https://doi.org/10.1523/JNEUROSCI.16-21-06965.1996en_US
dc.identifier.urihttps://hdl.handle.net/1805/22090
dc.language.isoen_USen_US
dc.publisherSociety for Neuroscienceen_US
dc.relation.isversionof10.1523/JNEUROSCI.16-21-06965.1996en_US
dc.relation.journalJournal of Neuroscienceen_US
dc.rightsPublisher Policyen_US
dc.sourcePMCen_US
dc.subjectExcitatory amino aciden_US
dc.subjectNeural transplanten_US
dc.subjectDopamineen_US
dc.subjectPathway repairen_US
dc.subjectVoltammetryen_US
dc.subjectHRP/immunocytochemistry double stainingen_US
dc.subjectRotational behavioren_US
dc.titleConstructing a new nigrostriatal pathway in the Parkinsonian model with bridged neural transplantation in substantia nigraen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ns006965.pdf
Size:
1.72 MB
Format:
Adobe Portable Document Format
Description:
Main article
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.99 KB
Format:
Item-specific license agreed upon to submission
Description: