Higher strength carbon fiber lithium-ion polymer battery embedded multifunctional composites for structural applications

If you need an accessible version of this item, please submit a remediation request.
Date
2022-03-17
Language
American English
Embargo Lift Date
Department
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Wiley Online Library
Abstract

This study proposes and evaluates the structural integrity of a carbon fiber reinforced polymer (CFRP) composite containing encapsulated lithium-ion polymer (Li-Po) batteries. A comparison of various composite structures made of CFRP having the core of lithium-ion batteries is conducted. Electrospinning is globally recognized as a flexible and cost-effective method for generating continuous nanofilaments. In this study, epoxy-multiwalled carbon nanotubes (CNT/epoxy) were electrospun onto CFRP layers, which improved interfacial bonding and strong adhesion between the layers which ultimately worked as an effective packaging for Li-ion batteries. This composite structure showed enhanced mechanical strength compared to the standard CFRP laminate structure due to incorporating electrospun CNT/epoxy nanofibers in between the layers. An alternate method was proposed for comparison where CNT/epoxy was air sprayed onto the CFRP layers. CFRP structure containing airsprayed CNT/epoxy was found to be stronger than standard CFRP laminate structure, although not as strong as electrospun CNT/epoxy enhanced CFRP laminates. Finally, the design validation, manufacturing method, and electromechanical characterization of multifunctional energy storage composites (MESCs) were examined and compared. Electrochemical characterization showed that MESCs with electrospun CNT/epoxy nanofibers enhanced CFRP laminate under loading conditions had similar performance to the standard lithium-ion pouch cells without any loading. The mechanical robustness of the proposed CFRP composite structures enables their manufacturing as multifunctional energy-storage devices for electric vehicles and other structural applications.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Biswas, P. K., Liyanage, A. A. H., Jadhav, M., Agarwal, M., & Dalir, H. (2022). Higher strength carbon fiber lithium-ion polymer battery embedded multifunctional composites for structural applications. Polymer Composites. doi: 10.1002/pc.26589
ISSN
Publisher
Series/Report
Sponsorship
National Science Foundation Small Business Technology Transfer (STTR) (#2036490)
Major
Extent
Identifier
Relation
Journal
Source
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}