Low-Temperature Plasma as an Approach for Inhibiting a Multi-Species Cariogenic Biofilm

If you need an accessible version of this item, please submit a remediation request.
Date
2020-01
Language
English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
MDPI
Abstract

This study aimed to determine how low-temperature plasma (LTP) treatment affects single- and multi-species biofilms formed by Streptococcus mutans, Streptococcus sanguinis, and Streptococcus gordonii formed on hydroxyapatite discs. LTP was produced by argon gas using the kINPen09™ (Leibniz Institute for Plasma Science and Technology, INP, Greifswald, Germany). Biofilms were treated at a 10 mm distance from the nozzle of the plasma device to the surface of the biofilm per 30 s, 60 s, and 120 s. A 0.89% saline solution and a 0.12% chlorhexidine solution were used as negative and positive controls, respectively. Argon flow at three exposure times (30 s, 60 s, and 120 s) was also used as control. Biofilm viability was analyzed by colony-forming units (CFU) recovery and confocal laser scanning microscopy. Multispecies biofilms presented a reduction in viability (log10 CFU/mL) for all plasma-treated samples when compared to both positive and negative controls (p < 0.0001). In single-species biofilms formed by either S. mutans or S. sanguinis, a significant reduction in all exposure times was observed when compared to both positive and negative controls (p < 0.0001). For single-species biofilms formed by S. gordonii, the results indicate total elimination of S. gordonii for all exposure times. Low exposure times of LTP affects single- and multi-species cariogenic biofilms, which indicates that the treatment is a promising source for the development of new protocols for the control of dental caries.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Figueira, L. W., Panariello, B. H. D., Koga-Ito, C. Y., & Duarte, S. (2021). Low-Temperature Plasma as an Approach for Inhibiting a Multi-Species Cariogenic Biofilm. Applied Sciences, 11(2), 570. https://doi.org/10.3390/app11020570
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Applied Sciences
Source
Publisher
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Final published version
Full Text Available at
This item is under embargo {{howLong}}