Mining Uncertain Sequential Patterns in Iterative MapReduce

dc.contributor.authorGe, Jiaqi
dc.contributor.authorXia, Yuni
dc.contributor.authorWang, Jian
dc.contributor.departmentDepartment of Computer and Information Science, School of Scienceen_US
dc.date.accessioned2016-06-21T15:31:09Z
dc.date.available2016-06-21T15:31:09Z
dc.date.issued2015
dc.description.abstractThis paper proposes a sequential pattern mining (SPM) algorithm in large scale uncertain databases. Uncertain sequence databases are widely used to model inaccurate or imprecise timestamped data in many real applications, where traditional SPM algorithms are inapplicable because of data uncertainty and scalability. In this paper, we develop an efficient approach to manage data uncertainty in SPM and design an iterative MapReduce framework to execute the uncertain SPM algorithm in parallel. We conduct extensive experiments in both synthetic and real uncertain datasets. And the experimental results prove that our algorithm is efficient and scalable.en_US
dc.eprint.versionAuthor's manuscripten_US
dc.identifier.citationGe, J., Xia, Y., & Wang, J. (2015). Mining Uncertain Sequential Patterns in Iterative MapReduce. In Advances in Knowledge Discovery and Data Mining (pp. 243-254). Springer International Publishing. http://dx.doi.org/10.1007/978-3-319-18032-8_19en_US
dc.identifier.urihttps://hdl.handle.net/1805/10059
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.isversionof10.1007/978-3-319-18032-8_19en_US
dc.relation.journalAdvances in Knowledge Discovery and Data Miningen_US
dc.rightsPublisher Policyen_US
dc.sourceAuthoren_US
dc.subjectuncertain databasesen_US
dc.subjectsequential pattern miningen_US
dc.titleMining Uncertain Sequential Patterns in Iterative MapReduceen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Ge_2015_mining.pdf
Size:
535.37 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.88 KB
Format:
Item-specific license agreed upon to submission
Description: