Male Lrp5A214V mice maintain high bone mass during dietary calcium restriction by altering the vitamin D endocrine system

dc.contributor.authorOzgurel, Serra Ucer
dc.contributor.authorReyes Fernandez, Perla C.
dc.contributor.authorChanpaisaeng, Krittikan
dc.contributor.authorFleet, James C.
dc.contributor.departmentPhysical Therapy, School of Health and Human Sciences
dc.date.accessioned2025-02-19T17:33:23Z
dc.date.available2025-02-19T17:33:23Z
dc.date.issued2024
dc.description.abstractEnvironmental factors and genetic variation individually impact bone. However, it is not clear how these factors interact to influence peak bone mass accrual. Here we tested whether genetically programmed high bone formation driven by missense mutations in the Lrp5 gene (Lrp5A214V) altered the sensitivity of mice to an environment of inadequate dietary calcium (Ca) intake. Weanling male Lrp5A214V mice and wildtype littermates (control) were fed AIN-93G diets with 0.125%, 0.25%, 0.5% (reference, basal), or 1% Ca from weaning until 12 weeks of age (ie, during bone growth). Urinary Ca, serum Ca, Ca regulatory hormones (PTH, 1,25 dihydroxyvitamin D3 (1,25(OH)2D3)), bone parameters (μCT, ash), and renal/intestinal gene expression were analyzed. As expected, low dietary Ca intake negatively impacted bones and Lrp5A214V mice had higher bone mass and ash content. Although bones of Lrp5A214V mice have more matrix to mineralize, their bones were not more susceptible to low dietary Ca intake. In control mice, low dietary Ca intake exerted expected effects on serum Ca (decreased), PTH (increased), and 1,25(OH)2D3 (increased) as well as their downstream actions (ie, reducing urinary Ca, increasing markers of intestinal Ca absorption). In contrast, Lrp5A214V mice had elevated serum Ca with a normal PTH response but a blunted 1,25(OH)2D3 response to low dietary Ca that was reflected in the renal 1,25(OH)2D3 producing/degrading enzymes, Cyp27b1 and Cyp24a1. Despite elevated serum Ca in Lrp5A214V mice, urinary Ca was not elevated. Despite an abnormal serum 1,25(OH)2D3 response to low dietary Ca, intestinal markers of Ca absorption (Trpv6, S100g mRNA) were elevated in Lrp5A214V mice and responded to low Ca intake. Collectively, our data indicate that the Lrp5A214V mutation induces changes in Ca homeostasis that permit mice to retain more Ca and support their high bone mass phenotype.
dc.eprint.versionFinal published version
dc.identifier.citationOzgurel SU, Reyes Fernandez PC, Chanpaisaeng K, Fleet JC. Male Lrp5A214V mice maintain high bone mass during dietary calcium restriction by altering the vitamin D endocrine system. J Bone Miner Res. 2024;39(3):315-325. doi:10.1093/jbmr/zjae011
dc.identifier.urihttps://hdl.handle.net/1805/45849
dc.language.isoen_US
dc.publisherOxford University Press
dc.relation.isversionof10.1093/jbmr/zjae011
dc.relation.journalJournal of Bone and Mineral Research
dc.rightsPublisher Policy
dc.sourcePMC
dc.subjectBone QCT/μCT
dc.subjectGenetic Animal Models
dc.subjectNutrition
dc.titleMale Lrp5A214V mice maintain high bone mass during dietary calcium restriction by altering the vitamin D endocrine system
dc.typeArticle
ul.alternative.fulltexthttps://pmc.ncbi.nlm.nih.gov/articles/PMC11240165/
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Ozgurel2024Male-PP.pdf
Size:
1.64 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.04 KB
Format:
Item-specific license agreed upon to submission
Description: