A nonparametric regression model for panel count data analysis

dc.contributor.authorZhao, Huadong
dc.contributor.authorZhang, Ying
dc.contributor.authorZhao, Xingqiu
dc.contributor.authorYu, Zhangsheng
dc.contributor.departmentBiostatistics, School of Public Healthen_US
dc.date.accessioned2020-08-12T20:06:37Z
dc.date.available2020-08-12T20:06:37Z
dc.date.issued2019
dc.description.abstractPanel count data are commonly encountered in analysis of recurrent events where the exact event times are unobserved. To accommodate the potential non-linear covariate effect, we consider a non-parametric regression model for panel count data. The regression B-splines method is used to estimate the regression function and the baseline mean function. The B-splines-based estimation is shown to be consistent and the rate of convergence is obtained. Moreover, the asymptotic normality for a class of smooth functionals of regression splines estimators is established. Numerical studies were carried out to evaluate the finite sample properties. Finally, we applied the proposed method to analyze the non-linear effect of one of interleukin functions with the risk of childhood wheezing.en_US
dc.eprint.versionAuthor's manuscripten_US
dc.identifier.citationZhao, H., Zhang, Y., Zhao, X., & Yu, Z. (2019). A nonparametric regression model for panel count data analysis, Statistica sinica, 29, p. 809-826. https://doi.org/10.5705/ss.202016.0534en_US
dc.identifier.urihttps://hdl.handle.net/1805/23596
dc.language.isoenen_US
dc.relation.isversionof10.5705/ss.202016.0534en_US
dc.relation.journalStatistica sinicaen_US
dc.rightsPublisher Policyen_US
dc.sourceAuthoren_US
dc.subjectempirical processen_US
dc.subjectmaximum pseudolikelihood estimatoren_US
dc.subjectregression splinesen_US
dc.titleA nonparametric regression model for panel count data analysisen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Zhao_2019_nonparametric.pdf
Size:
412.75 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.99 KB
Format:
Item-specific license agreed upon to submission
Description: