Skill-level classification and performance evaluation for endoscopic sleeve gastroplasty

Date
2023
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Springer Nature
Abstract

Background: We previously developed grading metrics for quantitative performance measurement for simulated endoscopic sleeve gastroplasty (ESG) to create a scalar reference to classify subjects into experts and novices. In this work, we used synthetic data generation and expanded our skill level analysis using machine learning techniques.

Methods: We used the synthetic data generation algorithm SMOTE to expand and balance our dataset of seven actual simulated ESG procedures using synthetic data. We performed optimization to seek optimum metrics to classify experts and novices by identifying the most critical and distinctive sub-tasks. We used support vector machine (SVM), AdaBoost, K-nearest neighbors (KNN) Kernel Fisher discriminant analysis (KFDA), random forest, and decision tree classifiers to classify surgeons as experts or novices after grading. Furthermore, we used an optimization model to create weights for each task and separate the clusters by maximizing the distance between the expert and novice scores.

Results: We split our dataset into a training set of 15 samples and a testing dataset of five samples. We put this dataset through six classifiers, SVM, KFDA, AdaBoost, KNN, random forest, and decision tree, resulting in 0.94, 0.94, 1.00, 1.00, 1.00, and 1.00 accuracy, respectively, for training and 1.00 accuracy for the testing results for SVM and AdaBoost. Our optimization model maximized the distance between the expert and novice groups from 2 to 53.72.

Conclusion: This paper shows that feature reduction, in combination with classification algorithms such as SVM and KNN, can be used in tandem to classify endoscopists as experts or novices based on their results recorded using our grading metrics. Furthermore, this work introduces a non-linear constraint optimization to separate the two clusters and find the most important tasks using weights.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Dials J, Demirel D, Sanchez-Arias R, et al. Skill-level classification and performance evaluation for endoscopic sleeve gastroplasty. Surg Endosc. 2023;37(6):4754-4765. doi:10.1007/s00464-023-09955-2
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Surgical Endoscopy
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Final published version
This item is under embargo {{howLong}}