A novel micellular fluorogenic substrate for quantitating the activity of 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase gamma (PLCγ) enzymes

Date
2024-03-29
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Public Library of Science
Abstract

The activities of the phospholipase C gamma (PLCγ) 1 and 2 enzymes are essential for numerous cellular processes. Unsurprisingly, dysregulation of PLCγ1 or PLCγ2 activity is associated with multiple maladies including immune disorders, cancers, and neurodegenerative diseases. Therefore, the modulation of either of these two enzymes has been suggested as a therapeutic strategy to combat these diseases. To aid in the discovery of PLCγ family enzyme modulators that could be developed into therapeutic agents, we have synthesized a high-throughput screening-amenable micellular fluorogenic substrate called C16CF3-coumarin. Herein, the ability of PLCγ1 and PLCγ2 to enzymatically process C16CF3-coumarin was confirmed, the micellular assay conditions were optimized, and the kinetics of the reaction were determined. A proof-of-principle pilot screen of the Library of Pharmacologically Active Compounds 1280 (LOPAC1280) was performed. This new substrate allows for an additional screening methodology to identify modulators of the PLCγ family of enzymes.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Visvanathan R, Utsuki T, Beck DE, et al. A novel micellular fluorogenic substrate for quantitating the activity of 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase gamma (PLCγ) enzymes. PLoS One. 2024;19(3):e0299541. Published 2024 Mar 29. doi:10.1371/journal.pone.0299541
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
PLoS One
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Final published version
Full Text Available at
This item is under embargo {{howLong}}