Transgenerational latent early-life associated regulation unites environment and genetics across generations
Date
Language
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Abstract
The origin of idiopathic diseases is still poorly understood. The latent early-life associated regulation (LEARn) model unites environmental exposures and gene expression while providing a mechanistic underpinning for later-occurring disorders. We propose that this process can occur across generations via transgenerational LEARn (tLEARn). In tLEARn, each person is a 'unit' accumulating preclinical or subclinical 'hits' as in the original LEARn model. These changes can then be epigenomically passed along to offspring. Transgenerational accumulation of 'hits' determines a sporadic disease state. Few significant transgenerational hits would accompany conception or gestation of most people, but these may suffice to 'prime' someone to respond to later-life hits. Hits need not produce symptoms or microphenotypes to have a transgenerational effect. Testing tLEARn requires longitudinal approaches. A recently proposed longitudinal epigenome/envirome-wide association study would unite genetic sequence, epigenomic markers, environmental exposures, patient personal history taken at multiple time points and family history.