Population pharmacogenetic-based pharmacokinetic modeling of efavirenz, 7-hydroxy- and 8-hydroxyefavirenz

Date
2014-01
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Wiley
Abstract

The purpose of this study was to determine the demographic and pharmacogenetic covariates that influence the disposition of efavirenz (EFV) and its major metabolites. A population pharmacokinetic (PK) model was developed from a randomized, cross-over, drug-interaction study in healthy male Korean subjects (n = 17). Plasma concentrations of EFV and its hydroxy-metabolites (0-120 hours) were measured by LC/MS/MS. Genomic DNA was genotyped for variants in the cytochrome P450 (CYP) 2A6, 2B6, 3A5, and MDR1 genes. A PK model was built in a stepwise procedure using nonlinear mixed effect modeling in NONMEM 7. The covariate model was built using the generalized additive modeling and forward selection-backward elimination. Model-based simulations were performed to predict EFV steady-state concentrations following 200, 400, and 600 mg daily oral dose among different CYP2B6 genotypes. The final model included only CYP2B6 genotype as a covariate that predicts EFV clearance through the formation of 8-OH EFV that represented 65% to 80% of EFV clearance. The total clearance of EFV in CYP2B6*6/6 genotype was ∼30% lower than CYP2B61/1 or CYP2B61/*6 alleles (P < .001). Clopidogrel reduced both formation and elimination clearances of 8-OH EFV by 22% and 19%, respectively (P = .033 and .041). Other demographics and genotype of accessory CYP pathways did not predict EFV or metabolites PK. CYP2B6 genotype was the only significant predictor of EFV disposition. The developed model may serve as the foundation for further exploration of pharmacogenetic-based dosing of EFV.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Abdelhady, A. M., Desta, Z., Jiang, F., Yeo, C. W., Shin, J., & Overholser, B. R. (2014). Population pharmacogenetic-based pharmacokinetic modeling of efavirenz, 7-hydroxy- and 8-hydroxyefavirenz. Journal of Clinical Pharmacology, 54(1), 87–96. http://doi.org/10.1002/jcph.208
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Journal of Clinical Pharmacology
Rights
IUPUI Open Access Policy
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Author's manuscript
Full Text Available at
This item is under embargo {{howLong}}