Diagnostic Evidence GAuge of Single cells (DEGAS): a flexible deep transfer learning framework for prioritizing cells in relation to disease

dc.contributor.authorJohnson, Travis S.
dc.contributor.authorYu, Christina Y.
dc.contributor.authorHuang, Zhi
dc.contributor.authorXu, Siwen
dc.contributor.authorWang, Tongxin
dc.contributor.authorDong, Chuanpeng
dc.contributor.authorShao, Wei
dc.contributor.authorZaid, Mohammad Abu
dc.contributor.authorHuang, Xiaoqing
dc.contributor.authorWang, Yijie
dc.contributor.authorBartlett, Christopher
dc.contributor.authorZhang, Yan
dc.contributor.authorWalker, Brian A.
dc.contributor.authorLiu, Yunlong
dc.contributor.authorHuang, Kun
dc.contributor.authorZhang, Jie
dc.contributor.departmentMedicine, School of Medicineen_US
dc.date.accessioned2023-05-02T15:59:58Z
dc.date.available2023-05-02T15:59:58Z
dc.date.issued2022-02-01
dc.description.abstractWe propose DEGAS (Diagnostic Evidence GAuge of Single cells), a novel deep transfer learning framework, to transfer disease information from patients to cells. We call such transferrable information "impressions," which allow individual cells to be associated with disease attributes like diagnosis, prognosis, and response to therapy. Using simulated data and ten diverse single-cell and patient bulk tissue transcriptomic datasets from glioblastoma multiforme (GBM), Alzheimer's disease (AD), and multiple myeloma (MM), we demonstrate the feasibility, flexibility, and broad applications of the DEGAS framework. DEGAS analysis on myeloma single-cell transcriptomics identified PHF19high myeloma cells associated with progression.en_US
dc.eprint.versionFinal published versionen_US
dc.identifier.citationJohnson TS, Yu CY, Huang Z, et al. Diagnostic Evidence GAuge of Single cells (DEGAS): a flexible deep transfer learning framework for prioritizing cells in relation to disease. Genome Med. 2022;14(1):11. Published 2022 Feb 1. doi:10.1186/s13073-022-01012-2en_US
dc.identifier.urihttps://hdl.handle.net/1805/32770
dc.language.isoen_USen_US
dc.publisherBMCen_US
dc.relation.isversionof10.1186/s13073-022-01012-2en_US
dc.relation.journalGenome Medicineen_US
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourcePMCen_US
dc.subjectAlzheimer’s diseaseen_US
dc.subjectCox proportional hazardsen_US
dc.subjectDeep learningen_US
dc.subjectMachine learningen_US
dc.subjectMultiple myelomaen_US
dc.subjectPrognostic modelsen_US
dc.subjectSingle-cell RNA sequencingen_US
dc.subjectSurvivalen_US
dc.subjectTransfer learningen_US
dc.subjectscRNA-seqen_US
dc.titleDiagnostic Evidence GAuge of Single cells (DEGAS): a flexible deep transfer learning framework for prioritizing cells in relation to diseaseen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
13073_2022_Article_1012.pdf
Size:
3.49 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.99 KB
Format:
Item-specific license agreed upon to submission
Description: