A Bayesian multiple imputation approach to bivariate functional data with missing components

If you need an accessible version of this item, please submit a remediation request.
Date
2021
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Wiley
Abstract

Existing missing data methods for functional data mainly focus on reconstructing missing measurements along a single function-a univariate functional data setting. Motivated by a renal study, we focus on a bivariate functional data setting, where each sampling unit is a collection of two distinct component functions, one of which may be missing. Specifically, we propose a Bayesian multiple imputation approach based on a bivariate functional latent factor model that exploits the joint changing patterns of the component functions to allow accurate and stable imputation of one component given the other. We further extend the framework to address multilevel bivariate functional data with missing components by modeling and exploiting inter-component and intra-subject correlations. We develop a Gibbs sampling algorithm that simultaneously generates multiple imputations of missing component functions and posterior samples of model parameters. For multilevel bivariate functional data, a partially collapsed Gibbs sampler is implemented to improve computational efficiency. Our simulation study demonstrates that our methods outperform other competing methods for imputing missing components of bivariate functional data under various designs and missingness rates. The motivating renal study aims to investigate the distribution and pharmacokinetic properties of baseline and post-furosemide renogram curves that provide further insights into the underlying mechanism of renal obstruction, with post-furosemide renogram curves missing for some subjects. We apply the proposed methods to impute missing post-furosemide renogram curves and obtain more refined insights.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Jang JH, Manatunga AK, Chang C, Long Q. A Bayesian multiple imputation approach to bivariate functional data with missing components. Stat Med. 2021;40(22):4772-4793. doi:10.1002/sim.9093
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Statistics in Medicine
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Author's manuscript
Full Text Available at
This item is under embargo {{howLong}}