XScan: An Integrated Tool for Understanding Open Source Community-Based Scientific Code

If you need an accessible version of this item, please email your request to digschol@iu.edu so that they may create one and provide it to you.
Date
2019
Language
English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Springer
Abstract

Many scientific communities have adopted community-based models that integrate multiple components to simulate whole system dynamics. The community software projects’ complexity, stems from the integration of multiple individual software components that were developed under different application requirements and various machine architectures, has become a challenge for effective software system understanding and continuous software development. The paper presents an integrated software toolkit called X-ray Software Scanner (in abbreviation, XScan) for a better understanding of large-scale community-based scientific codes. Our software tool provides support to quickly summarize the overall information of scientific codes, including the number of lines of code, programming languages, external library dependencies, as well as architecture-dependent parallel software features. The XScan toolkit also realizes a static software analysis component to collect detailed structural information and provides an interactive visualization and analysis of the functions. We use a large-scale community-based Earth System Model to demonstrate the workflow, functions and visualization of the toolkit. We also discuss the application of advanced graph analytics techniques to assist software modular design and component refactoring.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Zheng, W., Wang, D., & Song, F. (2019). XScan: An Integrated Tool for Understanding Open Source Community-Based Scientific Code. In J. M. F. Rodrigues, P. J. S. Cardoso, J. Monteiro, R. Lam, V. V. Krzhizhanovskaya, M. H. Lees, J. J. Dongarra, & P. M. A. Sloot (Eds.), Computational Science – ICCS 2019 (pp. 226–237). Springer International Publishing. https://doi.org/10.1007/978-3-030-22734-0_17
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Computational Science – ICCS 2019
Source
Author
Alternative Title
Type
Conference proceedings
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Author's manuscript
Full Text Available at
This item is under embargo {{howLong}}