Dysfunction in the βII Spectrin-Dependent Cytoskeleton Underlies Human Arrhythmia.

Abstract

Background: The cardiac cytoskeleton plays key roles in maintaining myocyte structural integrity in health and disease. In fact, human mutations in cardiac cytoskeletal elements are tightly linked with cardiac pathologies including myopathies, aortopathies, and dystrophies. Conversely, the link between cytoskeletal protein dysfunction in cardiac electrical activity is not well understood, and often overlooked in the cardiac arrhythmia field. Methods and Results: Here, we uncover a new mechanism for the regulation of cardiac membrane excitability. We report that βII spectrin, an actin-associated molecule, is essential for the post-translational targeting and localization of critical membrane proteins in heart. βII spectrin recruits ankyrin-B to the cardiac dyad, and a novel human mutation in the ankyrin-B gene disrupts the ankyrin-B/βII spectrin interaction leading to severe human arrhythmia phenotypes. Mice lacking cardiac βII spectrin display lethal arrhythmias, aberrant electrical and calcium handling phenotypes, and abnormal expression/localization of cardiac membrane proteins. Mechanistically, βII spectrin regulates the localization of cytoskeletal and plasma membrane/sarcoplasmic reticulum protein complexes that include the Na/Ca exchanger, RyR2, ankyrin-B, actin, and αII spectrin. Finally, we observe accelerated heart failure phenotypes in βII spectrin-deficient mice. Conclusions: Our findings identify βII spectrin as critical for normal myocyte electrical activity, link this molecule to human disease, and provide new insight into the mechanisms underlying cardiac myocyte biology.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Smith, S. A., Sturm, A. C., Curran, J., Kline, C. F., Little, S. C., Bonilla, I. M., … Mohler, P. J. (2015). Dysfunction in the βII Spectrin–Dependent Cytoskeleton Underlies Human Arrhythmia. Circulation, 131(8), 695–708. http://doi.org/10.1161/CIRCULATIONAHA.114.013708
ISSN
0009-7322 1524-4539
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Circulation
Rights
Publisher's policy
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Author's manuscript
Full Text Available at
This item is under embargo {{howLong}}