Equivariant quantum differential equation, Stokes bases, and K-theory for a projective space

dc.contributor.authorTarasov, Vitaly
dc.contributor.authorVarchenko, Alexander
dc.contributor.departmentMathematical Sciences, School of Scienceen_US
dc.date.accessioned2023-01-30T20:56:05Z
dc.date.available2023-01-30T20:56:05Z
dc.date.issued2021-06
dc.description.abstractWe consider the equivariant quantum differential equation for the projective space $$P^{n-1}$$and introduce a compatible system of difference equations. We prove an equivariant gamma theorem for $$P^{n-1}$$, which describes the asymptotics of the differential equation at its regular singular point in terms of the equivariant characteristic gamma class of the tangent bundle of $$P^{n-1}$$. We describe the Stokes bases of the differential equation at its irregular singular point in terms of the exceptional bases of the equivariant K-theory algebra of $$P^{n-1}$$and a suitable braid group action on the set of exceptional bases. Our results are an equivariant version of the well-known results of Dubrovin and Guzzetti.en_US
dc.eprint.versionAuthor's manuscripten_US
dc.identifier.citationTarasov, V., & Varchenko, A. (2021). Equivariant quantum differential equation, Stokes bases, and K-theory for a projective space. European Journal of Mathematics, 7(2), 706–728. https://doi.org/10.1007/s40879-021-00455-yen_US
dc.identifier.issn2199-675X, 2199-6768en_US
dc.identifier.urihttps://hdl.handle.net/1805/31048
dc.language.isoen_USen_US
dc.publisherSpringeren_US
dc.relation.isversionof10.1007/s40879-021-00455-yen_US
dc.relation.journalEuropean Journal of Mathematicsen_US
dc.rightsPublisher Policyen_US
dc.sourceAuthoren_US
dc.subject34M40en_US
dc.subjectBraid group actionen_US
dc.subjectEquivariant quantum differential equationen_US
dc.titleEquivariant quantum differential equation, Stokes bases, and K-theory for a projective spaceen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Tarasov2021Equivariant-AAM.pdf
Size:
621.66 KB
Format:
Adobe Portable Document Format
Description:
Article
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.99 KB
Format:
Item-specific license agreed upon to submission
Description: