Ganglionated plexi as neuromodulation targets for atrial fibrillation

Date
2017
Language
English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Wiley
Abstract

The autonomic nervous system plays an important role in the genesis of atrial fibrillation and is one of the candidate targets for atrial fibrillation therapy. This review focuses on the role of the autonomic nervous system in atrial fibrillation development and discusses the results of the ganglionated plexi catheter and surgical ablation in preclinical and clinical studies. The heart is innervated by the extrinsic and intrinsic autonomic nervous systems. The intrinsic autonomic nervous system consists of multiple ganglionated plexi and axons, which innervate the neighboring atrial myocardium and control their electrophysiological properties. Abnormal autonomic innervation has been observed in an animal model of atrial fibrillation and in humans. Direct recordings of autonomic nerve activity in canine models showed that atrial tachyarrhythmia episodes were invariably preceded by intrinsic cardiac autonomic nerve activity, thus supporting the importance of intrinsic cardiac autonomic nerve activity as the triggers for atrial tachyarrhythmia. Targeting ganglionated plexi with catheter ablation improves the outcomes of paroxysmal atrial fibrillation ablation in addition to pulmonary vein antrum isolation. Ablation of ganglionated plexi alone without pulmonary vein isolation is also useful in controlling paroxysmal atrial fibrillation in some patients. However, surgical ganglionated plexi ablation in patients with a large left atrium, persistent atrial fibrillation, and/or a history of prior catheter ablation does not result in additional benefits. These different outcomes suggest that ganglionated plexi ablation is effective in managing patients with paroxysmal atrial fibrillation, but its effects in patients with persistent atrial fibrillation and advanced atrial diseases might be limited.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Choi, E.-K., Zhao, Y., Everett, T. H. and Chen, P.-S. (2017), Ganglionated plexi as neuromodulation targets for atrial fibrillation. J Cardiovasc Electrophysiol. Accepted Author Manuscript. doi:10.1111/jce.13319
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Journal of Cardiovascular Electrophysiology
Rights
Publisher Policy
Source
Author
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Author's manuscript
Full Text Available at
This item is under embargo {{howLong}}