Eukaryotic translation initiation factor 5A inhibition alters physiopathology and immune responses in a “humanized” transgenic mouse model of type 1 diabetes

dc.contributor.authorImam, Shahnawaz
dc.contributor.authorMirmira, Raghavendra G.
dc.contributor.authorJaume, Juan C.
dc.contributor.departmentDepartment of Pediatrics, IU School of Medicineen_US
dc.date.accessioned2016-03-24T14:04:23Z
dc.date.available2016-03-24T14:04:23Z
dc.date.issued2014-04-01
dc.description.abstractTherapeutic options for treatment of type 1 diabetes (T1D) are still missing. New avenues for immune modulation need to be developed. Here we attempted at altering the diabetes outcome of our humanized model of T1D by inhibiting translation-initiation factor eIF5A hypusination in vivo. Double-transgenic (DQ8-GAD65) mice were immunized with adenoviral vectors carrying GAD65 for diabetes induction. Animals were subsequently treated with deoxyhypusine synthase (DHS) inhibitor GC7 and monitored for diabetes development over time. On one hand, helper CD4+ T cells were clearly affected by the downregulation of the eIF5A not just at the pancreas level but overall. On the other hand, the T regulatory cell component of CD4 responded with activation and proliferation significantly higher than in the non-GC7-treated controls. Female mice seemed to be more susceptible to these effects. All together, our results show for the first time that downregulation of eIF5A through inhibition of DHS altered the physiopathology and observed immune outcome of diabetes in an animal model that closely resembles human T1D. Although the development of diabetes could not be abrogated by DHS inhibition, the immunomodulatory capacity of this approach may supplement other interventions directed at increasing regulation of autoreactive T cells in T1D.en_US
dc.identifier.citationImam, S., Mirmira, R. G., & Jaume, J. C. (2014). Eukaryotic translation initiation factor 5A inhibition alters physiopathology and immune responses in a “humanized” transgenic mouse model of type 1 diabetes. American Journal of Physiology - Endocrinology and Metabolism, 306(7), E791–E798. http://doi.org/10.1152/ajpendo.00537.2013en_US
dc.identifier.urihttps://hdl.handle.net/1805/9008
dc.language.isoen_USen_US
dc.publisherAmerican Physiological Society (APS)en_US
dc.relation.isversionof10.1152/ajpendo.00537.2013en_US
dc.relation.journalAmerican Journal of Physiology - Endocrinology and Metabolismen_US
dc.rightsPublisher Policyen_US
dc.sourcePMCen_US
dc.subjectmouse modelen_US
dc.subjecttype 1 diabetes physiopathologyen_US
dc.subjectdeoxyhypusine synthaseen_US
dc.titleEukaryotic translation initiation factor 5A inhibition alters physiopathology and immune responses in a “humanized” transgenic mouse model of type 1 diabetesen_US
dc.typeArticleen_US
ul.alternative.fulltexthttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC3962610/en_US
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Eukaryotic.pdf
Size:
650.44 KB
Format:
Adobe Portable Document Format
Description:
Article
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.88 KB
Format:
Item-specific license agreed upon to submission
Description: