Effective targeting of the survivin dimerization interface with small molecule inhibitors
Date
Language
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Abstract
Many oncoproteins are considered undruggable because they lack enzymatic activities. In this study, we present a small-molecule–based anticancer agent that acts by inhibiting dimerization of the oncoprotein survivin, thereby promoting its degradation along with spontaneous apoptosis in cancer cells. Through a combination of computational analysis of the dimerization interface and in silico screening, we identified one compound that induced proteasome-dependent survivin degradation. Analysis of a set of structural analogues led us to identify a lead compound (LQZ-7F), which was effective in blocking the survival of multiple cancer cell lines in a low micromolar concentration range. LQZ-7F induced proteasome-dependent survivin degradation, mitotic arrest, and apoptosis, and it blocked the growth of human tumors in mouse xenograft assays. In addition to providing preclinical proof of concept for a survivin-targeting anticancer agent, our work offers novel in silico screening strategies to therapeutically target homodimeric oncogenic proteins considered undruggable.