Counting Photobleach Steps and the Dynamics of Bacterial Predators

Date
2016-04-08
Language
American English
Embargo Lift Date
Department
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Office of the Vice Chancellor for Research
Abstract

Photobleach (PB) counting is used to enumerate proteins by monitoring how the light intensity in some regions decreases by quanta as individual fluorophores photobleach. While it is straightforward in theory, PB counting is often difficult because fluorescence traces are noisy. In this work, we quantify the sources of noise that arise during photobleach counting to construct a principled likelihood function of observing the data given a model. Noise in the signal could arise from background fluorescence, variable fluorophore emission, and fluorophore blinking. In addition, in a completely different direction, we explore the role of hydrodynamic interactions on the dynamics of bacterial predators. Our study shows that Bdellovibrio (BV) - a model predatory bacterium - is susceptible to self-generated hydrodynamic forces. Near surfaces and defects, these hydrodynamic interactions co-localize BV with its prey, and this may enhance BV’s hunting efficiency.

Description
poster abstract
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Hossein Jashnsaz, Konstantinos Tsekouras, Mohammed Al Juboori, Corey Weistuch, Nick Miller, Tyler Nguyen, Bryan McCoy, Stephanie Perkins, Bruce Ray, Gregory Anderson, and Steve Presse. 2016, April 8. Counting Photobleach Steps and the Dynamics of Bacterial Predators. Poster session presented at IUPUI Research Day 2016, Indianapolis, Indiana.
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Rights
Source
Alternative Title
Type
Poster
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}