Human Mesenchymal Stem Cell Hydrogen Sulfide Production Critically Impacts the Release of Other Paracrine Mediators Following Injury

dc.contributor.authorMarkel, Troy A.
dc.contributor.authorDrucker, Natalie A.
dc.contributor.authorJensen, Amanda R.
dc.contributor.authorOlson, Kenneth R.
dc.contributor.departmentSurgery, School of Medicineen_US
dc.date.accessioned2023-03-15T17:56:54Z
dc.date.available2023-03-15T17:56:54Z
dc.date.issued2020-10
dc.description.abstractBackground: The use of mesenchymal stem cells (MSCs) for treatment during ischemia is novel. Hydrogen sulfide (H2S) is an important paracrine mediator that is released from MSCs to facilitate angiogenesis and vasodilation. Three enzymes, cystathionine-beta-synthase (CBS), cystathionine-gamma-lyase (CSE), and 3-mercaptopyruvate-sulfurtransferase (MPST), are mainly responsible for H2S production. However, it is unclear how these enzymes impact the production of other critical growth factors and chemokines. We hypothesized that the enzymes responsible for H2S production in human MSCs would also critically regulate other growth factors and chemokines. Materials and methods: Human MSCs were transfected with CBS, MPST, CSE, or negative control small interfering RNA. Knockdown of enzymes was confirmed by polymerase chain reaction. Cells were plated in 12-well plates at 100,000 cells per well and stimulated with tumor necrosis factor-α (TNF-α; 50 ng/mL), lipopolysaccharide (LPS; 200 ng/mL), or 5% hypoxia for 24 h. Supernatants were collected, and cytokines measured by multiplex beaded assay. Data were compared with the Mann-Whitney U-test, and P < 0.05 was significant. Results: TNF-α, LPS, and hypoxia effectively stimulated MSCs. Granulocyte colony-stimulating factor (GCSF), epidermal growth factor, fibroblast growth factor, granulocyte/monocyte colony-stimulating factor (GMCSF), vascular endothelial growth factor, and interferon gamma-inducible protein 10 were all significantly elevated when CSE was knocked down during TNF-α stimulation (P < 0.05). Knockdown of MPST during LPS stimulation more readily increased GCSF and epidermal growth factor but decreased GMCSF (P < 0.05). CBS knockdown decreased production of GCSF, fibroblast growth factor, GMCSF, and vascular endothelial growth factor (P < 0.05) after hypoxia. Conclusions: The enzymes that produce H2S in MSCs are also responsible for the production of other stem cell paracrine mediators under stressful stimuli. Therefore, reprogramming MSCs to endogenously produce more H2S as a therapeutic intervention could also critically impact other paracrine mediators, which may alter the desired beneficial effects.en_US
dc.eprint.versionAuthor's manuscripten_US
dc.identifier.citationMarkel TA, Drucker NA, Jensen AR, Olson KR. Human Mesenchymal Stem Cell Hydrogen Sulfide Production Critically Impacts the Release of Other Paracrine Mediators After Injury. J Surg Res. 2020;254:75-82. doi:10.1016/j.jss.2020.04.014en_US
dc.identifier.urihttps://hdl.handle.net/1805/31928
dc.language.isoen_USen_US
dc.publisherElsevieren_US
dc.relation.isversionof10.1016/j.jss.2020.04.014en_US
dc.relation.journalJournal of Surgical Researchen_US
dc.rightsPublisher Policyen_US
dc.sourcePMCen_US
dc.subjectHydrogen sulfideen_US
dc.subjectParacrine mediatorsen_US
dc.subjectStem cellsen_US
dc.subjectSulfurtransferasesen_US
dc.subjectLipopolysaccharidesen_US
dc.titleHuman Mesenchymal Stem Cell Hydrogen Sulfide Production Critically Impacts the Release of Other Paracrine Mediators Following Injuryen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
nihms-1587134.pdf
Size:
1.19 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.99 KB
Format:
Item-specific license agreed upon to submission
Description: