Low-Level Vagus Nerve Stimulation Upregulates Small Conductance Calcium Activated Potassium Channels in the Stellate Ganglion

dc.contributor.authorShen, Mark J.
dc.contributor.authorChang, Hao-Che
dc.contributor.authorPark, Hyung-Wook
dc.contributor.authorAkingba, A. George
dc.contributor.authorChang, Po-Cheng
dc.contributor.authorZhang, Zheng
dc.contributor.authorLin, Shien-Fong
dc.contributor.authorShen, Changyu
dc.contributor.authorChen, Lan S.
dc.contributor.authorChen, Zhenhui
dc.contributor.authorFishbein, Michael C.
dc.contributor.authorChiamvimonvat, Nipavan
dc.contributor.authorChen, Peng-Sheng
dc.contributor.departmentMedicine, School of Medicine
dc.date.accessioned2025-05-27T13:14:20Z
dc.date.available2025-05-27T13:14:20Z
dc.date.issued2013
dc.description.abstractBackground: Small conductance calcium-activated potassium (SK) channels are responsible for afterhyperpolarization that suppresses nerve discharges. Objectives: To test the hypothesis that low-level vagus nerve stimulation (LL-VNS) leads to the upregulation of SK2 proteins in the left stellate ganglion. Methods: Six dogs (group 1) underwent 1-week LL-VNS of the left cervical vagus nerve. Five normal dogs (group 2) were used as controls. SK2 protein levels were examined by using Western blotting. The ratio between SK2 and glyceraldehydes-3-phosphate-dehydrogenase levels was used as an arbitrary unit (AU). Results: We found higher SK2 expression in group 1 (0.124 ± 0.049 AU) than in group 2 (0.085 ± 0.031 AU; P<.05). Immunostaining showed that the density of nerve structures stained with SK2 antibody was also higher in group 1 (11,546 ± 7,271 μm(2)/mm(2)) than in group 2 (5321 ± 3164 μm(2)/mm(2); P<.05). There were significantly more ganglion cells without immunoreactivity to tyrosine hydroxylase (TH) in group 1 (11.4%±2.3%) than in group 2 (4.9% ± 0.7%; P<.05). The TH-negative ganglion cells mostly stained positive for choline acetyltransferase (95.9% ± 2.8% in group 1 and 86.1% ± 4.4% in group 2; P = .10). Immunofluorescence confocal microscopy revealed a significant decrease in the SK2 staining in the cytosol but an increase in the SK2 staining on the membrane of the ganglion cells in group 1 compared to group 2. Conclusions: Left LL-VNS results in the upregulation of SK2 proteins, increased SK2 protein expression in the cell membrane, and increased TH-negative (mostly choline acetyltransferase-positive) ganglion cells in the left stellate ganglion. These changes may underlie the antiarrhythmic efficacy of LL-VNS in ambulatory dogs.
dc.eprint.versionAuthor's manuscript
dc.identifier.citationShen MJ, Hao-Che Chang, Park HW, et al. Low-level vagus nerve stimulation upregulates small conductance calcium-activated potassium channels in the stellate ganglion. Heart Rhythm. 2013;10(6):910-915. doi:10.1016/j.hrthm.2013.01.029
dc.identifier.urihttps://hdl.handle.net/1805/48390
dc.language.isoen_US
dc.publisherElsevier
dc.relation.isversionof10.1016/j.hrthm.2013.01.029
dc.relation.journalHeart Rhythm
dc.rightsPublisher Policy
dc.sourcePMC
dc.subjectAutonomic nervous system
dc.subjectVagus nerve stimulation
dc.subjectStellate ganglion
dc.subjectSmall conductance calcium activated potassium channel
dc.subjectWestern blot
dc.titleLow-Level Vagus Nerve Stimulation Upregulates Small Conductance Calcium Activated Potassium Channels in the Stellate Ganglion
dc.typeArticle
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Shen2013Low-AAM.pdf
Size:
1.44 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.04 KB
Format:
Item-specific license agreed upon to submission
Description: