NuCLS: A scalable crowdsourcing approach and dataset for nucleus classification and segmentation in breast cancer

dc.contributor.authorAmgad, Mohamed
dc.contributor.authorAtteya, Lamees A.
dc.contributor.authorHussein, Hagar
dc.contributor.authorMohammed, Kareem Hosny
dc.contributor.authorHafiz, Ehab
dc.contributor.authorElsebaie, Maha A.T.
dc.contributor.authorAlhusseiny, Ahmed M.
dc.contributor.authorAlMoslemany, Mohamed Atef
dc.contributor.authorElmatboly, Abdelmagid M.
dc.contributor.authorPappalardo, Philip A.
dc.contributor.authorSakr, Rokia Adel
dc.contributor.authorMobadersany, Pooya
dc.contributor.authorRachid, Ahmad
dc.contributor.authorSaad, Anas M.
dc.contributor.authorAlkashash, Ahmad M.
dc.contributor.authorRuhban, Inas A.
dc.contributor.authorAlrefai, Anas
dc.contributor.authorElgazar, Nada M.
dc.contributor.authorAbdulkarim, Ali
dc.contributor.authorFarag, Abo-Alela
dc.contributor.authorEtman, Amira
dc.contributor.authorElsaeed, Ahmed G.
dc.contributor.authorAlagha, Yahya
dc.contributor.authorAmer, Yomna A.
dc.contributor.authorRaslan, Ahmed M.
dc.contributor.authorNadim, Menatalla K.
dc.contributor.authorElsebaie, Mai A.T.
dc.contributor.authorAyad, Ahmed
dc.contributor.authorHanna, Liza E.
dc.contributor.authorGadallah, Ahmed
dc.contributor.authorElkady, Mohamed
dc.contributor.authorDrumheller, Bradley
dc.contributor.authorJaye, David
dc.contributor.authorManthey, David
dc.contributor.authorGutman, David A.
dc.contributor.authorElfandy, Habiba
dc.contributor.authorCooper, Lee A.D.
dc.contributor.departmentPathology and Laboratory Medicine, School of Medicineen_US
dc.date.accessioned2023-06-20T12:48:15Z
dc.date.available2023-06-20T12:48:15Z
dc.date.issued2022
dc.description.abstractBackground: Deep learning enables accurate high-resolution mapping of cells and tissue structures that can serve as the foundation of interpretable machine-learning models for computational pathology. However, generating adequate labels for these structures is a critical barrier, given the time and effort required from pathologists. Results: This article describes a novel collaborative framework for engaging crowds of medical students and pathologists to produce quality labels for cell nuclei. We used this approach to produce the NuCLS dataset, containing >220,000 annotations of cell nuclei in breast cancers. This builds on prior work labeling tissue regions to produce an integrated tissue region- and cell-level annotation dataset for training that is the largest such resource for multi-scale analysis of breast cancer histology. This article presents data and analysis results for single and multi-rater annotations from both non-experts and pathologists. We present a novel workflow that uses algorithmic suggestions to collect accurate segmentation data without the need for laborious manual tracing of nuclei. Our results indicate that even noisy algorithmic suggestions do not adversely affect pathologist accuracy and can help non-experts improve annotation quality. We also present a new approach for inferring truth from multiple raters and show that non-experts can produce accurate annotations for visually distinctive classes. Conclusions: This study is the most extensive systematic exploration of the large-scale use of wisdom-of-the-crowd approaches to generate data for computational pathology applications.en_US
dc.eprint.versionFinal published versionen_US
dc.identifier.citationAmgad M, Atteya LA, Hussein H, et al. NuCLS: A scalable crowdsourcing approach and dataset for nucleus classification and segmentation in breast cancer. Gigascience. 2022;11:giac037. doi:10.1093/gigascience/giac037en_US
dc.identifier.urihttps://hdl.handle.net/1805/33859
dc.language.isoen_USen_US
dc.publisherOxford University Pressen_US
dc.relation.isversionof10.1093/gigascience/giac037en_US
dc.relation.journalGigascienceen_US
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourcePMCen_US
dc.subjectCrowdsourcingen_US
dc.subjectDeep learningen_US
dc.subjectNucleus segmentationen_US
dc.subjectNucleus classificationen_US
dc.subjectBreast canceren_US
dc.titleNuCLS: A scalable crowdsourcing approach and dataset for nucleus classification and segmentation in breast canceren_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
giac037.pdf
Size:
10.09 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.99 KB
Format:
Item-specific license agreed upon to submission
Description: