68722 Role of ER calcium in beta cell senescence and diabetes pathophysiology

Date
2021
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Cambridge University Press
Abstract

ABSTRACT IMPACT: The proposed study has the potential to inform new paradigms of type 1 diabetes prevention and therapy with the overall goal of improving β cell health during autoimmunity.

OBJECTIVES/GOALS: Type 1 diabetes (T1D) results from immune-mediated destruction of pancreatic βcells. Recent data suggest that activation of senescence and acquisition of a senescence associated secretory phenotype (SASP) by βcells may contribute to T1D pathogenesis. However, the molecular mechanisms responsible for this phenotype are not well understood.

METHODS/STUDY POPULATION: We hypothesize that loss of endoplasmic reticulum (ER) Ca2+ induces βcell senescence, SASP as well as mitochondrial dysfunction which drive T1D development. The current study utilizes SERCA2 KO INS-1 βcells (S2KO) exhibiting loss of ER Ca2+ and a SERCA2 haploinsufficient mice on a non-obese diabetic background (NOD-S2+/-) to test the role of ER Ca2+ loss during T1D development. Senescence associated βgalactosidase staining (SA-βgal), expression of senescence markers (RT-qPCR), mitochondrial function (Seahorse, TMRM) and mitochondrial copy number (qPCR) were all measured in S2KO versus WT βcells and are currently being measured in the NOD-S2+/- mouse model at 6, 8, 12, 14, and 16wks of age.

RESULTS/ANTICIPATED RESULTS: RT-qPCR assays detecting senescence markers cdkn1a and cdkn2a and mitochondrial specific genes cox1 and nd1 were developed and validated in both INS-1 βcells and mouse islets. Mitochondrial function assay (Seahorse) was optimized for use in INS-1 βcells and is currently under development for use in intact mouse islets. S2KO βcells displayed increased SA- βgal staining as well as increased mitochondrial coupling efficiency (p=0.0146) and baseline mitochondrial copy number (p=0.0053) compared to WT βcells, suggesting a senescence phenotype and altered mitochondrial function. NOD-S2+/- mice exhibited increased expression of the senescence marker cdkn2a in the islet at 12wks (p=0.0117) compared to control mice, whereas cdkn1a remained unchanged across all timepoints tested.

DISCUSSION/SIGNIFICANCE OF FINDINGS: Our results suggest that loss of SERCA2 and reduced ER Ca2+ alter βcell mitochondrial function and are associated with features of senescence. Future studies will test whether SERCA2 activation and/or senolytic/senomorphic drugs are able to prevent or delay diabetes onset in NOD-S2+/- mice.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Weaver SA, Kono T, Syed F, Bone R, Evans-Molina C. 68722 Role of ER calcium in beta cell senescence and diabetes pathophysiology. Journal of Clinical and Translational Science. 2021;5(s1):16-17. doi:10.1017/cts.2021.446
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Journal of Clinical and Translational Science
Source
Publisher
Alternative Title
Type
Abstract
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Final published version
Full Text Available at
This item is under embargo {{howLong}}