Stereoselective pharmacokinetics of stable isotope (+/-)-[13C]-pantoprazole: Implications for a rapid screening phenotype test of CYP2C19 activity
Date
Language
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Abstract
AIMS:
We have previously shown that the (±)-[(13) C]-pantoprazole breath test is a promising noninvasive probe of CYP2C19 activity. As part of that trial, plasma, breath test indices and CYP2C19 (*2, *3, and *17) genotype were collected. Here, we examined whether [(13) C]-pantoprazole exhibits enantioselective pharmacokinetics and whether this enantioselectivity is correlated with indices of breath test.
METHODS:
Plasma (-)- and (+)-[(13) C]-pantoprazole that were measured using a chiral HPLC were compared between CYP2C19 genotypes and correlated with breath test indices.
RESULTS:
The AUC( 0-∞) of (+)-[(13) C]-pantoprazole in PM (*2/*2, n = 4) was 10.1- and 5.6-fold higher that EM (*1/*1or *17, n = 10) and IM (*1/*2or *3, n = 10) of CYP2C19, respectively (P < 0.001). The AUC( 0-∞) of (-)-[(13) C]-pantoprazole only significantly differed between PMs and EMs (1.98-fold; P = 0.05). The AUC( 0-∞) ratio of (+)-/(-)-[(13) C]-pantoprazole was 3.45, 0.77, and 0.67 in PM, IM, and EM genotypes, respectively. Breath test index, delta over baseline show significant correlation with AUC( 0-∞) of (+)-[(13) C]-pantoprazole (Pearson's r = 0.62; P < 0.001).
CONCLUSIONS:
[(13) C]-pantoprazole exhibits enantioselective elimination. (+)-[(13) C]-pantoprazole is more dependent on CYP2C19 metabolic status and may serve as a more attractive probe of CYP2C19 activity than (-)-[(13) C]-pantoprazole or the racemic mixture.