Riemann–Hilbert approach to a generalized sine kernel
dc.contributor.author | Gharakhloo, Roozbeh | |
dc.contributor.author | Its, Alexander R. | |
dc.contributor.author | Kozlowski, Karol K. | |
dc.contributor.department | Mathematical Sciences, School of Science | en_US |
dc.date.accessioned | 2021-10-15T15:28:21Z | |
dc.date.available | 2021-10-15T15:28:21Z | |
dc.date.issued | 2020-02-01 | |
dc.description.abstract | We derive the large-distance asymptotics of the Fredholm determinant of the so-called generalized sine kernel at the critical point. This kernel corresponds to a generalization of the pure sine kernel arising in the theory of random matrices and has potential applications to the analysis of the large-distance asymptotic behaviour of the so-called emptiness formation probability for various quantum integrable models away from their free fermion point. | en_US |
dc.eprint.version | Author's manuscript | en_US |
dc.identifier.citation | Gharakhloo, R., Its, A. R., & Kozlowski, K. K. (2020). Riemann–Hilbert approach to a generalized sine kernel. Letters in Mathematical Physics, 110(2), 297–325. https://doi.org/10.1007/s11005-019-01218-3 | en_US |
dc.identifier.issn | 1573-0530 | en_US |
dc.identifier.uri | https://hdl.handle.net/1805/26788 | |
dc.language.iso | en | en_US |
dc.publisher | Springer Link | en_US |
dc.relation.isversionof | 10.1007/s11005-019-01218-3 | en_US |
dc.relation.journal | Letters in Mathematical Physics | en_US |
dc.rights | IUPUI Open Access Policy | en_US |
dc.source | Author | en_US |
dc.subject | Riemann-Hilbert approach | en_US |
dc.subject | generalized sine kernel | en_US |
dc.subject | Fredholm determinant | en_US |
dc.title | Riemann–Hilbert approach to a generalized sine kernel | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Gharakhloo2019Riemann-Hilbert-AAM.pdf
- Size:
- 207.64 KB
- Format:
- Adobe Portable Document Format
- Description:
- Author's Manuscript
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.99 KB
- Format:
- Item-specific license agreed upon to submission
- Description: